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Abstract

The relationship between human sleep and metabolism has not yet
been studied systematically and well understood. In this thesis, we in-
vestigate the association between sleep stages and exhaled breath mass
spectrometry in the framework of Granger causality.

We first introduce a scalable neural network approach for inferring
nonlinear Granger causality between continuously- and categorically-
valued variables. We test this technique on a wide range of simulated
datasets with differing degrees of nonlinearity and demonstrate that, in
many settings, it outperforms the conventional linear vector autoregres-
sive model. The datasets, on which validation is performed, include the
Lorenz 96 system and rich and realistic simulations of fMRI time series.

By leveraging the developed method and the bootstrapping technique,
we then identify Granger causes and effects of sleep phase transitions
from breathomics data. Many ions are discovered in the causal analysis
of time series; and the results suggest that metabolism and sleep reg-
ulate each other mutually. Among these discoveries we find isoprene,
a compound the association of which with sleep phases was reported
in the literature before [1, 38]. This analysis sheds some light on the
relationship between sleep and volatile organic compounds in human
breath and opens many venues of future research.

i





Acknowledgements

I would first like to thank Professor Dr. Joachim M. Buhmann and his Ph.D.
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fitting contribution to Zürich Exhalomics project.

iii





Nomenclature

Abbreviations

AUPR Area under precision-recall curve

AUROC Area under receiver operating characteristic curve

GC Granger causality

GC-LSTM Granger causal long short-term memory

GC-MLP Granger causal multilayer perceptron

LSTM Long short-term memory

MLP Multilayer perceptron

MS Mass spectrometry

NREM Non-REM sleep

PSG Polysomnography

REM Rapid eye movement sleep

RNN Recurrent neural network

TRGC Time-reversed Granger causality

VAR Vector autoregressive model

v





Contents

Contents vii

1 Introduction 1
1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Sleep Cycle and Sleep Stage Scoring . . . . . . . . . . . . . . . 7
2.3 Time Series Causality . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Granger Causality . . . . . . . . . . . . . . . . . . . . . 9
2.4 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Feedforward Neural Networks . . . . . . . . . . . . . . 13
2.4.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . 15

3 Pre-processing & Exploratory Data Analysis 17
3.1 Experimental Setup and Data . . . . . . . . . . . . . . . . . . . 17
3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Sample Normalisation . . . . . . . . . . . . . . . . . . . 19
3.2.2 Time Series Standardisation & Denoising . . . . . . . . 21

3.3 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Batch Effects . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Differences between Sleep Stages . . . . . . . . . . . . . 25

4 Inferring Granger Causality with Neural Networks 29
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Time Series Forecasting with MLP . . . . . . . . . . . . 30
4.1.2 Neural Networks with Non-uniform Embedding . . . 30
4.1.3 Deep Feature Selection . . . . . . . . . . . . . . . . . . . 31

vii



Contents

4.1.4 Componentwise MLPs and LSTMs . . . . . . . . . . . 31
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Including Categorically-valued Time Series . . . . . . . 34
4.2.2 Important Hyperparameters . . . . . . . . . . . . . . . 35
4.2.3 Implementation Details . . . . . . . . . . . . . . . . . . 35
4.2.4 LSTMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Quantifying Uncertainty . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Discovering Effects by Reversing Time . . . . . . . . . . . . . . 39

5 Simulation Experiments 41
5.1 Linear Autoregressive Model . . . . . . . . . . . . . . . . . . . 41
5.2 Nonlinear Autoregressive Model . . . . . . . . . . . . . . . . . 43
5.3 Nonlinear Autoregressive Model with Non-additive Interaction 44
5.4 Lorenz 96 Model . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Simulated fMRI Data . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Categorically-valued Time Series . . . . . . . . . . . . . . . . . 50

5.6.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Reversed Time Analysis . . . . . . . . . . . . . . . . . . . . . . 52

6 MS Data Analysis 55
6.1 Data Processing and Analysis Procedure . . . . . . . . . . . . 55

6.1.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Ions Driving Sleep Stages . . . . . . . . . . . . . . . . . 56
6.2.2 Ions Driven by Sleep Stages . . . . . . . . . . . . . . . . 61
6.2.3 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.1 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Simulation Experiments with MS Data . . . . . . . . . . . . . . 65
6.4.1 Permuted Ion Intensities . . . . . . . . . . . . . . . . . . 66
6.4.2 Permuted Sleep Stage Labels . . . . . . . . . . . . . . . 67
6.4.3 Synthetic Sleep Stage Labels . . . . . . . . . . . . . . . 67

7 Discussion & Conclusions 69
7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A Visualisations 73

B Model 79

C Simulation Results 83

D Inference Results 85

viii



Contents

D.1 Granger Causes . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
D.1.1 Positive Mode . . . . . . . . . . . . . . . . . . . . . . . . 85
D.1.2 Negative Mode . . . . . . . . . . . . . . . . . . . . . . . 87

D.2 Granger Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
D.2.1 Positive Mode . . . . . . . . . . . . . . . . . . . . . . . . 90
D.2.2 Negative Mode . . . . . . . . . . . . . . . . . . . . . . . 92

D.3 CV Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 97

ix





Chapter 1

Introduction

Exhaled breath analysis is an interdisciplinary field of study which has at-
tracted researchers since the times of ancient Greeks, who correctly recog-
nised breath odours as symptoms of diseases and used the sense of smell
as a diagnostic tool [5]. Today, mass spectrometry (MS), an analytical tech-
nique, facilitates an objective and quantitative description of the exhalome,
thus, allowing the use of statistical and machine learning models. Breath
metabolomics [40], or breathomics, is based on the principle that different
physiological statuses, e.g. diseases, of the subject may lead to distinct
profiles of volatile organic compounds (VOC) within the exhale [40]. This
makes breath analysis a potentially powerful non-invasive tool with applica-
tions in disease diagnosis and monitoring and even in exploration of com-
plex relationships between metabolites and physiological conditions.

The goal of this thesis is to analyse time course breathomics data and study
links between compounds in exhalome and the stages of sleep that are de-
rived from polysomnography (PSG), acquired simultaneously with breath
mass spectra. We develop a machine learning model, based on the concept
of Granger causality, to recover complex dependencies in these multimodal
time series data and infer causal relationships between variables. This model
is sufficiently general to represent nonlinearity, non-additive variable inter-
actions and to simultaneously include both continuously- and categorically-
valued time series.

1.1 Problem Description

The problem tackled by the thesis can be formalised as follows. We assume
that we are given N replicates of multivariate time series retrieved from
different experimental units – in this case, single individuals, i.e. subjects.
These multivariate time series include:

1



1. Introduction

• A categorically-valued target variable {Yt}t∈{1,...,T} ∈ {W, N1, N2, N3, R}
which represents the sleep stage across T time steps. Herein, W corre-
sponds to the wakefulness phase, whereas R denotes rapid eye move-
ment (REM) sleep and N1, N2, N3 are non-REM (NREM) sub-phases.

• M continuously-valued time series
{

X j
t

}
t∈{1,...,T}

, where j = 1, ..., M

and X j
t corresponds to the relative intensity of ion j in the mass spec-

trum of exhaled breath at time step t. Observe, that the mass spectrum
at time t is given by vector MSt =

[
X1

t X2
t · · · XM

t
]> ∈ RM.

The goal is then to identify metabolites that are causally related to sleep
stages, i.e. metabolites that drive the sleep stage, denoted by X j −→ Y, and
metabolites that are driven by the stage, Y −→ X j. In general, this knowledge
could be helpful for fundamental understanding of metabolic processes that
occur during sleep.

1.2 Contributions

The key contribution of this work is the development of the whole pipeline
from pre-processing to causal inference for breathomics and sleep stage time
series data.

• Inspired by [73], we introduce a regularised neural network model for
inferring Granger causality between multiple time series. The architec-
ture of this network differs from the design considered in the literature
before [73].

• We investigate the performance of the inference method in presence
of both categorically- and continuously-valued time series generated
from a variety of linear and nonlinear autoregressive models. Addi-
tionally, we perform simulation experiments on the ‘real world’ breath-
omics data.

• We apply bootstrapping [18] to quantify uncertainty about causal re-
lationships. This procedure allows identifying relationships that are
invariant across all subjects and, thus, can be useful when there ex-
ists unwanted variation because of differences between experimental
units.

• Last but not least, we use the introduced method for inferring non-
linear Granger causality to discover ions that cause and are caused
by different phases of sleep from synchronised time course mass spec-
trometry and sleep stage data.

2



1.3. Content

1.3 Content

The thesis consists of seven chapters, most of them covering different aspects
of the conducted data analysis.

1. Background (see Chapter 2): we introduce the reader to the context
and theoretical background of this work. First, we briefly review basic
principles of mass spectrometric analysis and sleep stage scoring. We
explain the concept of Granger causality and discuss conventional ap-
proaches to inferring it. Finally, we also provide a short overview of
the neural network models, relevant to the the techniques described in
further chapters.

2. Pre-processing & Exploratory Data Analysis (see Chapter 3): we ex-
plain the pre-processing procedures applied to data before to the causal
time series analysis. Namely, we discuss mass spectrum and batch nor-
malisation, time series standardisation and denoising. Additionally,
we explore the data using dimensionality reduction techniques.

3. Inferring Granger Causality with Neural Networks (see Chapter 4):
after reviewing related research work, we introduce a nonlinear ap-
proach to inferring Granger causality based on feedforward neural
networks. We provide implementation details of our technique and
discuss a principled way for quantifying uncertainty about inferred
causal relationships that uses bootstrapping.

4. Simulation Experiments (see Chapter 5): we perform several con-
trolled simulation experiments to compare the performance of neural
networks to the conventional linear vector autoregressive model. We
consider linear and nonlinear multivariate time series with continuously-
and categorically-valued variables. We also examine the empirical per-
formance of time-reversed Granger causality inference.

5. MS Data Analysis (see Chapter 6): we use the proposed model along-
side with the bootstrap method to infer Granger causes and effects
of sleep phases among studied positive and negative ions. In ad-
dition, we perform controlled simulation experiments on the breath-
omics data and validate the model to corroborate the inference results.

6. Discussion & Conclusions (see Chapter 7): we reflect on the results of
the thesis and finalise it by considering possible directions for further
research.

Supplementary materials can be found at the end in four appendices.
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Chapter 2

Background

In this thesis we analyse time course mass spectrometry and sleep stage
data using a specially tailored machine learning model. Therefore, a basic
understanding of mass spectrometry, sleep physiology and the underlying
statistical framework is crucial for the comprehension of the whole inference
pipeline, from the raw data to the techniques applied. In this chapter, we
briefly review these topics to provide the reader with the general context for
the rest of the paper.

2.1 Mass Spectrometry

Mass spectrometry [14] is an analytical technique with a wide range of ap-
plications, e.g. in metabolomics and proteomics, pollution and food control,
reaction physics and kinetics etc. The goal of MS analysis is to quantify rel-
ative abundances of ions within a compound. The physical property that it
measures are mass-to-charge-ratios.

The process of MS measurements can be roughly described as follows. First,
gaseous ions have to be produced from molecules. For that purpose, dif-
ferent ion sources can be used, for instance, electron, chemical or field ion-
isation [14]. The mass analyser then separates charged particles based on
their mass-to-charge ratios into beams; and, finally, the detector measures
abundances of ions and transforms them into electric signals that can be
transferred to a computer. Figure 2.1, taken from [10], depicts a schematic
of a simple mass spectrometer. The final output of the analysis is referred to
as mass spectrum and is usually presented in the form of a table or a bar plot
(see Figure 2.2 for an example) containing mass-to-charge ratios alongside
with corresponding relative abundances.

MS analysis has been subject to many technological advancements since the
first spectrometer was built by J. J. Thompson in 1912 [14]. Major improve-
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2. Background

Figure 2.1: A simplified scheme of a mass spectrometer, taken from [10]. A sample is introduced
and ionised; ions are propagated in electric and magnetic fields and, consequently, are separated.

Figure 2.2: A mass spectrum of exhaled breath visualised as a bar diagram. Each bar corresponds
to a measured mass-to-charge ratio (often denoted by m/z or m/q), whereas the height of a bar
is determined by the relative abundance of the corresponding ion.

6



2.2. Sleep Cycle and Sleep Stage Scoring

ments were made in the resolution and the sensitivity of measurements, new
ionisation sources were discovered, a variety of mass analysers and detectors
were introduced. Discussing these details is beyond the scope of this work,
and we refer the interested reader to [14] for a comprehensive overview of
various techniques.

2.2 Sleep Cycle and Sleep Stage Scoring

In our analysis, sleep stage is the target variable. The sleep is one of the
less understood and explained physiologic sates. The human brain goes
through different phases, namely, wakefulness, rapid eye movement sleep
and sleep without rapid eye movements [65], which in turn consists of three
sub-phases, often denoted by S1, S2, and S3 [47]. In reality, these stages
are not strictly separated, i.e. transitions between them are not abrupt, but
smooth and gradual [47].

In order to encourage consistency across laboratories and research groups,
standard sleep stage scoring procedures were introduced, according to which
a phase of sleep can be detected from the observation of body functions
[47]. Usually several parameters from polysomnographic recordings are
used; namely:

• Electrooculogram (EOG) records changes in electrical potential in the
vicinity of the eye [34]. The potential results from charge differences
between cornea and retina tissues and fluctuates because of eye move-
ments.

• Electroencephalogram (EEG) measures electrical potentials on the sur-
face of the head that originate from activity in brain neurons [9]. Com-
pared to other brain imaging techniques, it is non-invasive and has a
high time resolution.

• Electromyogram (EMG) tracks electrical activity within muscles [52].
Usually it is monitored at multiple sites, for instance, in chin and limbs
[47].

• Electrocardiogram (ECG or EKG) captures electrical cardiac waves from
electrodes placed on body surface [17]. These signals are a product of
heart muscle contractions during the cardiac cycle.

• Respiratory electrodes measure a range of parameters associated with
respiration, such as snore sounds, oronasal airflow, thoracic and ab-
dominal effort [47].

Characteristics of the aforementioned signals differ across sleep phases. Dur-
ing NREM stages overall relaxation in physiological activity can be observed,
wheres REM sleep leads to a substantial rise in it [47]. In particular, REM

7



2. Background

Figure 2.3: Full time graph of a trivariate time series. For every time point t ∈ Z, X2
t causally

influences X1
t+1, X3

t+1 and X3
t+2. Note, that this structure features no instantaneous causal

effects.

is described by rapid eye movements, the EEG patterns similar to wakeful-
ness, irregular breathing etc. Based on observations of such specific patterns,
formal rules were developed to score each stage from polysomnography.
The most commonly used regulations come from Rechtschaffen and Kales
method (or R and K rules) that is documented in American Academy of
Sleep Medicine (AASM) scoring manual [47].

2.3 Time Series Causality

In this thesis we adopt the approach of causal inference, since often the
fundamental goal of biological or medical research is to discover causal re-
lationships, rather than mere associations. Causal reasoning allows making
statements about changes in outcomes that can occur after interventions on
certain variables. Therefore, causality is a more powerful framework than
probabilistic reasoning. However, the price of this power is the non-triviality
of causal discovery, an inverse problem of identifying causal structure from a
joint probability distribution [60]. This subsection introduces the reader to
causal analysis of time series. The review provided herein closely follows
‘Time Series’ chapter by Peters et al. in [60].

Consider multivariate (continuously-valued) time series {Xt}t∈Z where Xt =[
X1

t X2
t · · · Xp

t
]>. Usually we assume that {Xt}t∈Z is strictly stationary

[60]; this assumption is made by many statistical techniques for time series
analysis. Causal influences within this series can be then visualised using
the full time graph [60], an infinite directed acyclic graph (DAG) with nodes
corresponding to X j

t, for j ∈ {1, 2, ..., p} and t ∈ Z, and directed edges – to
cause-effect relationships. An example of such graph for a trivariate time
series is shown in Figure 2.3. It is important to note, that, in general, causal
effects can be instantaneous [60], i.e. the full time graph may contain edges
of the form Xi

t −→ X j
t, for i 6= j. Often it is more convenient to summarise

the infinite full graph by the corresponding summary graph [60], the vertices

8



2.3. Time Series Causality

of which represent variables across whole time. To construct this simplified
graph, for all i 6= j, if, for some k ∈ {0} ∪N and some t ∈ Z, there is
edge Xi

t−k −→ X j
t in the full graph, then Xi −→ X j has to be added to the

summary graph. For instance, the summary graph corresponding to Figure
2.3 is given by X1 ←− X2 −→ X3.

Similar to causal reasoning with i.i.d. data, we can also consider interventions
on time series. One way to formalise interventions are structural causal models
(SCM) [60]. If {Xt}t∈Z admits an SCM, then, for some K ≥ 0 and for all
j ∈ {1, 2, ..., p}:

X j
t := f j

((
PAj

K

)
t−K

,
(

PAj
K−1

)
t−K+1

, ...,
(

PAj
0

)
t
, N j

t

)
, (2.1)

where N j
t are jointly independent noise, or innovation, terms, and PAj

k de-
notes the set of all variables that influence X j with lag k. An intervention
in such model can be easily represented as a replacement of the appropriate
structural assignments (as in Equation 2.1).

A well-studied special case of the SCM is the vector autoregressive model (VAR)
[46], which assumes that f j are linear. In VAR of order K, we have:

Xt := ν +
K

∑
k=1

AkXt−k + Nt, (2.2)

where ν ∈ Rp×1 is a fixed intercept vector, Ak ∈ Rp×p are fixed matrices of
coefficients, and Nt =

[
N1

t N2
t · · · Np

t
]> is a zero-mean random vector

with E
[
NtN>t

]
= ΣN and E

[
NtN>s

]
= 0, for t 6= s. This simple, yet practi-

cal model has been instrumental in structural analysis of multivariate time
series, particularly, in inferring Granger causality.

2.3.1 Granger Causality

One of the most popular approaches to causal time series analysis is Granger
causality (GC or G-causality), introduced by C. W. J. Granger in 1969 [29]
in the context of econometric models. Since then Granger causality and its
extensions have been applied in many domains, including, but not limited to
economics [57], climatology [55], neuroscience [63] and metabolomics [16].

According to [19], two properties that a definition of causality should ide-
ally encapsulate are (1) temporal precedence: the cause precedes the effect and
(2) physical influence: intervening on the cause changes the effect. Granger’s
concept of causality focuses on the former; intuitively, if X is a cause of Y
and, thus, temporally precedes it, the past of X should be useful for predict-
ing the future of Y [46]. More formally, Granger causality can be defined as
follows [19]. Let us consider stationary time series {Xt}t∈Z and {Yt}t∈Z. Let

9



2. Background

I∗(t − 1) be an information set containing all information available in the
universe up to time t − 1, and let I∗−X(t − 1) be the same set as I∗(t − 1),
but with values of time series X removed (up to time t− 1). We say that X
Granger-causes Y iff

Yt��⊥⊥I∗(t− 1)|I∗−X(t− 1), (2.3)

for all t ∈ Z. This definition for the bivariate case can be easily extended
to multivariate time series by including all of the variables into set I∗(t−
1). Realistically, we might be not able to record all variables. Therefore,
usually I∗(t− 1) contains only what was measured. In this case, statements
about Granger causality between observed time series are valid only if the
considered set of variables is causally sufficient [60], i.e. if there exist no
unobserved time series {Zt}t∈Z which is a common cause of two observed
variables. In this case, Zt is a confounder, or a latent variable.

Granger Causality in VAR

In practice, Granger causality is often inferred by assuming some time series
model, for, instance, VAR. It can be shown that in VAR Granger causality
can be determined from zero constraints on the coefficients [46].

Recall the model for multivariate time series Xt given by Equation 2.2. We
have that Xi does not Granger-cause X j iff, for all k ∈ {1, 2, ..., K}, (Ak)ji = 0.
However, normally model coefficients are unknown and have to be esti-
mated from data. There exist tests for zero constraints on VAR coefficients
involving statistics with known (asymptotic) reference distributions [46], for
example, the F-test can be used.

A natural exhaustive procedure to infer the complete structure of the given
time series is based on model comparison, carried out for each potential
cause-effect pair [3]. Let us consider observing target time series {Yt}t∈{1,...,T}

and predictor variables
{

X j
t

}
t∈{1,...,T}

, for j = 1, ..., p − 1. To investigate if

some variable Xc drives Y, we need to compare two models [3, 60]:

Yt =
K

∑
k=1

αkYt−k +
p−1

∑
j=1
j 6=c

K

∑
k=1

β jkX j
t−k + NY

t (2.4)

and

Yt =
K

∑
k=1

α̃kYt−k +
p−1

∑
j=1

K

∑
k=1

β̃ jkX j
t−k + ÑY

t , (2.5)

where NY
t and ÑY

t are innovation terms, and α, β, α̃ and β̃ are fixed unknown
coefficients. Note, that the model given by Equation 2.4 is restricted, because
all coefficients for Xc are set to 0; whereas the model defined by Equation 2.5

10



2.3. Time Series Causality

is referred to as full, since it includes Xc. After fitting these two regression
models, a statistical test is conducted to compare their performance [3]. If
model 2.5 is significantly better than 2.4, then we reject the null hypothesis
and include edge Xc −→ Y into the summary graph.

Lasso Granger Method

In order to learn the full causal structure of a p-dimensional multivariate
time series using the exhaustive method explained above, O

(
p2) regression

models need to be fitted [3], this can be prohibitive for large p. To tackle
high-dimensional causal inference problems, the Lasso Granger method was
proposed [3, 45], which uses Lasso regression [74] for variable selection. In
particular, this method utilises an adjusted loss function: the group Lasso
penalty [81] is added to the residual sum of squares. In Lasso Granger
analysis, we have to regress each variable on the rest [3, 45] only once; thus,
in total, only O(p) regression models have to be fitted.

Let us again consider observing target time series {Yt}t∈{1,...,T} and predictor

variables
{

X j
t

}
t∈{1,...,T}

, for j = 1, ..., p− 1. Then, in Lasso Granger, the loss

function for the regression of Y on X j [45] is given by

T

∑
i=K+1

(
yi −

p−1

∑
j=1

K

∑
k=1

β jkxj
i−k −

K

∑
k=1

βpkyi−k

)2

+ λ
p

∑
j=1

∥∥∥βGj

∥∥∥
2

, (2.6)

herein, lower-case letters denote observed values of the corresponding time
series; K is the maximum lag at which (auto-)regressive relationships are con-
sidered; β jk are fixed unknown coefficients that are estimands; λ is the reg-
ularisation parameter that controls the sparsity of the estimated coefficient
vector; and Gj stands for a group of covariates with βGj =

[
β j1 β j2 · · · β jK

]>.
Note, that the covariates belonging to the same time series are grouped to-
gether. This is crucial for inferring Granger causality, because, if some series
X j does not Granger-cause Y, it is desirable that all of the coefficients that
belong to X j are shrunk towards zero during estimation. This kind of be-
haviour is achieved by introducing a group penalty as shown in Equation
2.6.

An important property of the graphical Lasso method in causal structure
learning is its statistical consistency [3], which holds under certain assump-
tions about sparsity and dimensionality (the proof for Granger Lasso is due
to [3]). In other words, the output of the method is consistent with the
true Granger causality graph with probability 1 when T, p → ∞. However,
to achieve the consistency, regularisation parameter λ needs to be chosen
appropriately [45], which is non-trivial.
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2. Background

Nonlinear Extensions

Arguably, a substantial limitation of using the vector autoregressive model
in Granger causality analysis is the assumption that each time series value
can be represented as a linear function of the past values of the target series
and its causes. Such representation does not allow for nonlinearities and
interactions between covariates.

There has been an extensive body of literature discussing various nonlinear
approaches to Granger causality [2, 48, 69, 53, 24, 55, 77, 73]. These methods
focus on performing nonlinear multivariate regression with feature spaces of
kernel functions [2, 48, 69], random forests (RF) [24, 55] and neural networks,
such as multilayer perceptrons (MLP) [53, 73], recurrent neural networks
(RNN) [77] and long short-term memory (LSTM) [73].

Limitations of Granger Causality

While the concept of Granger causality is practically compelling and has
been applied in many domains, it has some shortcomings and can be mis-
leading in certain cases.

As mentioned before, one of the assumptions of GC analysis is causal suffi-
ciency. In case of observing a causally insufficient set of variables, the results
of inference may be misleading [60]. Peters et al. [60] provide an example
of a bivariate time series consisting of prices for butter and cheese. The un-
observed price for milk drives both of these variables. Due to differences
in the production times, tests for Granger causality spuriously infer that the
price of butter causes the price of cheese. It is worth mentioning that there
exist methods to address this issue, for example, partial Granger causality
proposed in [31].

There is also a number of quite artificial examples where Granger causality
fails to produce adequate results [60], which will not be discussed herein. It
is important to note, that the GC analysis does not consider instantaneous
interactions between variables. This may lead to under- and overestimation
of causal influence [60]. To alleviate this effect, it could be beneficial to
include instantaneous terms into regression models (see Equations 2.4, 2.5
and 2.6) fitted for the inference, however, such analysis can lead to invalid
conclusions.

2.4 Neural Networks

Neural networks (NN) provide a powerful framework for solving various
problems of machine learning [28]. In recent years deep learning has, ar-
guably, become one of the most popular state-of-the-art approaches to both
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Figure 2.4: The schematic of a two-layer perceptron with ten inputs and one output. The flow
of information is indicated by arrows. Note, that bias units are included as well. The graph was
generated using NN-SVG tool [41].

supervised and unsupervised learning with applications ranging from play-
ing the game of Go [68] to classifying cancerous lung tissues [78]. In this
section we briefly review some models for supervised learning; particularly,
those that can be used for time series prediction as ‘building blocks’ in
Granger causality estimation (see Chapter 4). For a comprehensive overview
the interested reader is referred to [28] or [6].

2.4.1 Feedforward Neural Networks

The most commonly known architecture are feedforward neural networks, or
multilayer perceptrons (MLP). An MLP approximates some function y = f ∗(x)
by f (x; θ), where θ are parameters. f (x; θ) maps inputs x to outputs y, which
can be probabilities of classes (as in classification) or arbitrary continuous
values (as in regression) [28].

Feedforward networks can be represented by directed acyclic graphs [28],
wherein information flows forward from input units to the output without
feedback. Figure 2.4 depicts such representation for a simple feedforward
architecture. To define feedforward neural networks more rigorously, let us
consider a network with M inputs x =

[
x1 · · · xM

]> and one output. The
model can then be described as a series of functional transformations [6].
First, M linear combinations, or activations, are computed for the first layer
of the network with size M(1) [6]:

a(1)j =
M

∑
i=1

w(1)
ji xi + w(1)

j0 , (2.7)
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2. Background

where j = 1, ..., M(1), w(1)
ji and w(1)

j0 are parameters of the first layer, referred
to as weights and biases, respectively. Subsequently, a non-linear activation
function is applied to every aj [6]:

z(1)j = h(a(1)j ), (2.8)

where z(1)j are hidden units. Using these hidden unit values, activations for

the second layer of size M(2) can be constructed as follows [6]:

a(2)j =
M(1)

∑
i=1

w(2)
ji z(1)i + w(2)

j0 , (2.9)

wherein w(2)
ji and w(2)

j0 are weights and biases of the second layer and j =

1, ..., M(2). Thus, computations of such form are composed until the output
layer is reached and the final output is evaluated.

It is important to note, that activation functions can differ for layers, es-
pecially, for the output. There exist various activation functions and their
use depends on the specifics of the application. The default choice in mod-
ern neural networks, recommended in [28], is the rectified linear unit (ReLU)
h(x) = ReLU(x) = max{0, x}. The choice of the activation function at the
output of a network is closely related to the type of the response we want
to model. Consider having vector of activations h from the layer preceding
the output. A sensible choice for the normally distributed response, e.g. in
regression, is a linear function ŷ = W>h + b [28]. On the other hand, for
multinomially distributed responses, e.g. in multiclass classification, it is
recommended to apply the softmax function [28]:

ŷi = softmax(z)i =
exp (zi)

∑j exp
(
zj
) , (2.10)

where z = W>h + b. Note, that softmax assumes that the network has
multiple outputs, which can be seen as probabilities of different categories.

Weights and biases, used by the network, form vector of parameters θ. When
fitting, or training, a feedforward neural network, we have to find θ that
minimises the error function, specific to the task targeted by the network.
For instance, in regression we may consider minimising the sum-of-squares
error function [6]:

E(θ) =
1
2

N

∑
i=1
‖yi − f (xi; θ)‖2

2 (2.11)

For multiclass classification with C classes, the cross-entropy loss is appropri-
ate [6]:

E(θ) = −
N

∑
i=1

C

∑
c=1
{yic ln ( f (xi; θ)c) + (1− yic) ln (1− f (xi; θ)c)} , (2.12)
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2.4. Neural Networks

Figure 2.5: A schematic of a recurrent neural network without outputs. As can be seen, input
(multivariate) time series values xt−1, xt, xt+1 are transformed into hidden features ht−1, ht, ht+1.
Note, that ht is given by f (ht−1, xt; θ), where θ are network’s parameters. The diagram is
adapted from [28].

where yic stands for the c-th entry of vector yi. Minimising such error func-
tions is an optimisation problem that is usually addressed by deriving the
gradient of the error function w.r.t. θ and performing gradient descent until
convergence to a local optimum where ∇θE(θ)|θ=θ̂ = 0 [28]. A standard effi-
cient method for computing gradients in multilayer feedforward networks is
the back-propagation [28]. This algorithm is used as a subroutine in learning
to evaluate the gradient based on one training point at a time in stochas-
tic gradient descent (SGD) or on multiple points, forming a mini-batch, in
mini-batch gradient descent.

An important advantage of feedforward neural networks over conventional
statistical techniques for regression and classification is their flexibility in ap-
proximating functions. The universal approximation theorem provides support
for this property. According to this theorem, any continuous function on a
closed and bounded subset of Rn can be approximated arbitrarily well by
a feedforward neural network with a linear output and at least one hidden
layer with the logistic sigmoid activation function [28].

2.4.2 Recurrent Neural Networks

MLPs map a fixed number of features to their output, however, in sequential
data, such as time series, it may be desirable for a neural network model to
scale to varying numbers of features. Recurrent neural networks (RNN) use
parameter sharing to facilitate this scalability [28]. This class of networks has
become instrumental in forecasting time series [26, 36] and is closely related
to the state space models [67].

Figure 2.5, adapted from [28], contains a schematic representation of a sim-
ple RNN without output. Let xt, for t ∈ Z, denote (multivariate) time series
values. An important building block of many recurrent networks are hidden
units, which can be seen as ‘summaries’ of the present and the past inputs
[28]. Hidden features at time step t are given by

ht = f (ht−1, xt; θ), (2.13)
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2. Background

where θ are parameters. These hidden features can then be mapped, using
another transformation, to outputs yt, which represent, depending on a spe-
cific application, forecasts of the future values, probabilities of classes etc.
Parameter sharing is possible, because transition function f (·) and parame-
ters θ can be shared across all time points [28]. As a consequence, the model
can easily generalise to time series of varying lengths.

The training of RNNs does not require any specialised algorithms for com-
puting gradients. The standard back-propagation procedure is sufficient
and is often referred to as back-propagation through time (BPTT). Similarly
to MLPs, the error function, evaluated based on the outputs and provided
targets, is tightly coupled with what kind of response needs to be modelled.

There exist many variations to the general framework that is laid out in this
subsection, including the most powerful state-of-the-art sequential approach
– long short-term memory (LSTM) RNNs [28]. In this work we are not particu-
larly interested in the predictive power of the most advanced models per se,
our goal is to use them as a subroutine in the estimation of Granger causal-
ity. Therefore, it is beyond the scope to cover intricate details, which the
interested reader can find in [28].
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Chapter 3

Pre-processing & Exploratory Data
Analysis

In this chapter we describe pre-processing methods for time-course mass-
spectrometry data applied prior to estimating Granger causality. In partic-
ular, we provide details about normalisation of mass spectra and batches,
time series normalisation and denoising. These procedures are crucial in re-
moving undesirable biologically irrelevant artefacts. We also perform some
initial exploratory data analysis. To begin with, we explain the experimental
setup used for the acquisition of data.

3.1 Experimental Setup and Data

The dataset that is considered in this thesis was collected at the Department
of Chemistry and Applied Biosciences of ETH Zürich by the Zenobi research
group within Zürich Exhalomics project [83].

In total, 14 subjects participated in the study. Each participant was moni-
tored while sleeping; namely, secondary electrospray ionization (SESI) MS
analysis of exhaled breath was performed online alongside with PSG record-
ings. Figure 3.1 contains a schematic of the data acquisition pipeline.

Measurements were taken two times for most subjects: in negative and pos-
itive ion modes, i.e. most subjects slept for two nights. Exhaled breath was
sampled and analysed every 10 seconds. In positive mode, ion abundances
were recorded for, on average, 2,700 equally spaced time points. In the nega-
tive mode, the average length of time series is 2,500 points. Those molecules
for which intensities were not higher with the breathing mask put on than
without were discarded from the further data analysis, because their signals
are not reliable. Thus, the resulting dataset consists of ion abundances for
1,271 ions in the positive mode and 725 in negative, synchronised with sleep
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3. Pre-processing & Exploratory Data Analysis

Figure 3.1: A schematic of the data acquisition process. Breath, exhaled by the sleeping subject,
is delivered to the ionisation chamber via the heated flexible tube. Subsequently, sampled exhale
is analysed by the mass spectrometer. Image courtesy of Nora Nowak.

Figure 3.2: Pre-processed relative abundance time series (note, that the time series was re-
scaled) for the ion with 69.07 m/z. Synchronised sleep stage labels are indicated by colours:
orange segments correspond to wakefulness, NREM stages are shown in blue (N1, N2 and N3),
and green segments are aligned with REM sleep.

stage labels. Positive mode data originates from 13 subjects, whereas nega-
tive mode data was acquired from 12 subjects. An example of (positive) ion
intensity time series alongside with sleep stages is shown in Figure 3.2.

PSG included EOG, ECG, thoracic and abdominal effort, leg movement and
pulse oximetry (i.e. blood oxygen saturation) measurements. After obtain-
ing recordings, PSG signals were synchronised with MS time series, and
sleep stage scoring was performed manually.
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3.2. Pre-processing

3.2 Pre-processing

Raw mass spectrometry data usually feature unwanted variation that is bi-
ologically irrelevant. This variation originates from various sources, such
as different weights or volumes of analysed samples [80] or batch effects
due to the known structure of the experiment [51]. Procedures that remove
technical artefacts are critical in facilitating comparability of sampled mass
spectra and time series. These preparation steps can have crucial influence
on performance of classification and regression models fitted consequently
and on the reproducibility of results. An interesting case study on this issue
is provided in [54]. Pre-processing steps performed by us are listed below
in the chronological order:

1. Mass spectrum, or sample, normalisation;

2. Smoothing of ion intensity time series;

3. Standardisation of time series.

3.2.1 Sample Normalisation

The general purpose of sample normalisation for mass spectrometry data is to
remove unwanted variation, which often occurs due to differences in masses
and volumes of analysed samples, fluctuations in temperatures and changes
in other experimental conditions [62, 51]. Normalisation involves transform-
ing observed raw ion abundances within every mass spectrum to make sam-
ples biologically meaningful.

There exist many normalisation techniques, and the choice of an appropri-
ate method needs to be guided by the understanding of underlying assump-
tions [20]. Herein, we briefly review some of the methods described in the
literature. Many of the techniques discussed below are reminiscent of nor-
malisation methods for RNA sequencing (RNA-Seq) data, for example, see
[20]. Therefore, we also provide some insights gained from the RNA-Seq
literature. Throughout this subsection we assume that N samples of mass
spectra with M relative ion abundances are given. For the sake of simplicity,
let the intensity of ion j in sample i be denoted by xij.

Total Ion Count Normalisation

Total ion count (TIC) normalisation [15, 62] is a simple and common technique,
the idea of which is to normalise every sample w.r.t. the total ion count,
the sum of all relative ion abundances within a sample. Values normalised
based on TIC are given by

x̃ij =
xij

TICi
=

xij

∑M
j=1 xij

(3.1)
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3. Pre-processing & Exploratory Data Analysis

This method, thus, assumes that the total amount of ‘expression’ across all
ions should be the same for all samples [20]. In order to eliminate the in-
fluence of outliers on normalising factors TICi, ions with highest relative
abundances can be ignored in the calculation of the total count [15], thus,
yielding a more robust normalisation procedure.

Median Scale Normalisation

Median scale normalisation [62] assumes that sampled mass spectra are sim-
ilar as much as possible. This method requires choosing reference x∗ =[
x∗1 · · · x∗M

]
. It can be, for instance, a randomly selected observed mass

spectrum [62]. It is important to note, that the choice of x∗ can strongly
affect the outcome of normalisation and, consequently, the results of further
analysis. Intensities are normalised based on the reference as follows

x̃ij =
xij

medianj

(
xij
x∗j

) (3.2)

Thus, the normalising factor is the median of ratios between sample and
reference intensities.

Quantile Normalisation

Quantile normalisation [62] enforces identical distributions of ion intensities
across all samples. In this procedure, relative abundances within each mass
spectrum are ranked and are then mapped to a vector of values in the order
given by ranking, i.e. the highest ranking ion is mapped to some value x∗1 ,
the second highest ranking ion is mapped to x∗2 etc. Each x∗j is given by the
average intensity of ions with rank j. As a result, all corresponding intensity
quantiles are the same across all mass spectra.

Internal Standards Normalisation

In some experiments, we might have a priori knowledge about concentra-
tions of certain ions or we might be able to insert a compound artificially
into each sample. Such control ions with fixed concentrations are referred
to as internal standards and can be used for sample normalisation [62]. Let
us consider having one internal standard – ion with index s. Assuming that
abundance xis should be the same across all samples i, normalised intensi-
ties are constructed as follows

x̃ij =
xij

xis
, (3.3)

alternatively, it is also possible to choose one sample as a reference and
normalise w.r.t. the intensity of the standard in the reference sample, as
described in [62]. Both versions yield equivalent results.
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Figure 3.3: Raw intensity time series for the ion with 55.04 m/z (in the positive mode) acquired
from one of the subjects. These ions are produced by water vapour, and their relative abundance
is expected to stay constant. Nevertheless, the raw time series exhibits some variability. Note,
that the end-points of the time series with low intensities correspond to periods when the breath-
ing mask was not attached, therefore, these segments are ignored in normalisation and further
analysis.

Generally, this procedure is more robust when it is based on multiple stan-
dards [20]. A considerable drawback of this normalisation method is that
reference ions might not be available in all experiments, and their insertion
into samples may be not affordable.

For the data considered in this thesis, we chose to use internal standards
normalisation, because, based on the domain-specific knowledge, we found
standards for both, negative and positive, ion modes. Namely, positive
mode mass spectra were normalised w.r.t. ions produced by water with
the mass-to-charge ratio of 55.04, and negative mode data were normalised
to a water-formic acid cluster with 63 m/z. Both of these ions are closely
associated with water vapour present in exhaled breath. Since breath is
fully saturated with water [8], it is reasonable to assume that the relative
abundance of these ions in exhalome should stay constant throughout night.
Nevertheless, raw signals for these ions feature a fair amount of variabil-
ity, Figure 3.3 depicts the raw intensity time series for 55.04 m/z from the
positive mode. These fluctuations suggest a need for normalisation.

3.2.2 Time Series Standardisation & Denoising

Next pre-processing step applied to ion intensity time series is smoothing.
As can be seen from Figure 3.3, ion intensity signals contain high frequency
fluctuations. These are, probably, not associated with metabolic changes
induced by sleep stages. Therefore, we remove high frequency components
by smoothing all time series.
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Figure 3.4: Normalised relative abundance time series for ion with 69.07 m/z before and after
smoothing, plotted in blue and orange, respectively. Smoothing was performed using Savitzky–
Golay filter with the window length of 21 and order 3 polynomials. We used the implementation
available in SciPy library [37].

To smooth intensity time series, we apply Savitzky–Golay (SG) filter [61, 64], a
low-pass filter that retains components with lower frequencies. It transforms
time series observations by performing least squares polynomial regressions
within the range of the moving window of a predefined length. Let us con-
sider degree k polynomial given by p(n) = ∑k

i=1 aini. During SG smoothing
of time series Xt, for each time t, we estimate coefficients ai by minimising

the sum-of-squares ∑m
l=−m (p(l)− xt+l)

2 = ∑m
l=−m

(
∑k

i=1 aili − xt+l

)2
, where

2m + 1 is the width of the filter window [64]. The filtered time series value
at time t is given by x̃t = p(0) = a0. This procedure is then repeated
for all points in the observed time series by iteratively moving the window.
Savitzky and Golay showed that the least squares polynomial smoothing
technique described above is equivalent to the discrete convolution of the
original signal with a one-dimensional vector of coefficients [64]:

x̃t =
m

∑
i=−m

cixt+i, (3.4)

where ci are filter’s coefficients. Thus, rather than fitting polynomial regres-
sions for every window, coefficients ci can be computed analytically [61, 64]
and used in convolution.

An example of ion abundance time series smoothed with this method is pro-
vided in Figure 3.4. The output signal, plotted in orange, is noticeably less
noisy than the input, shown in blue. In our pre-processing, we smoothed all
normalised intensity time series using the SG filter with the window length
of 21 and polynomials of order 3.

Another possible source of unwanted variation within mass spectrometric
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data are batch effects [51], which usually originate from the structure of the
experiment. For instance, measurements could be performed with two dif-
ferent devices. As a result, some percentage of variance in the data may
be explained by systematic differences between the two groups, or batches.
In our case, batch effects are a consequence of biological variation among
subjects.

Sample normalisation techniques discussed in the previous subsection do
not explicitly account for differences between batches and, thus, usually fail
to mitigate them [11]. In this subsection we discuss the standardisation [25]
of ion abundance time series. The purpose of this transformation is twofold:
to prepare variables for regularisation by putting them on comparable scales
and to reduce systematic differences between time series from different pa-
tients.

Let us consider observing M continuously-valued time series representing
normalised ion intensities

{
X j

t

}
t∈{1,...,T}

. Standardised observations for ion

j are given by

x̃j
t =

xj
t − x̄j√
σ̂2
(
xj
) , (3.5)

where x̄j = 1
T ∑T

i=1 xj
i is the average of the j-th time series, and σ̂2 (xj) =

1
T−1

(
xj

i − x̄j
)2

is the standard deviation. As can be seen, x̃j
t are zero-mean

and have unit variance for all ions j. Standardisation is performed separately
for each replicate of time series, i.e. separately for each subject. Thus, if we
assume that subject effects take a form of a fixed shift in all or some of the
variables, then re-scaling should be able to remove them.

There exist various departures from the basic formula given in Equation 3.5.
For example, it might be sensible to replace the average of the time series
with the median and the standard deviation with the interquartile range
[51]. This adjustment makes the procedure more robust, since medians and
interquartile ranges are less influenced by outliers. Other examples include
using various functions of the standard deviation, e.g. the square root or
two standard deviations [25, 51]

It is worth mentioning, that the standardisation of mass spectrometric data
has been criticised before [51] because of the distributional properties. The
procedure is not particularly appropriate for distributions where the mean
and the variance are not independent. MS measurements can be roughly de-
scribed by Poisson process, which is characterised by a dependence between
these parameters.
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3.3 Exploratory Data Analysis

In this subsection we investigate if the MS data contain any systematic struc-
ture using dimensionality reduction techniques. In particular, we inspect t-
distributed stochastic neighbour embedding (t-SNE) [75] and principal com-
ponent analysis (PCA) [70] plots. These methods are commonly applied to
find non-linear and linear low-dimensional representations for datasets of
various origins, while preserving important information, such as clustering,
local and global structures. Dimensionality reduction was performed with
scikit-learn (v0.21.2) library [58]. Default parameter values were used for
t-SNE, in particular, the perplexity was set to 30. Visualisations provided
herein completely ignore the time structure by treating data points indepen-
dently and have merely an exploratory purpose.

3.3.1 Batch Effects

First, we investigate whether raw and pre-processed MS data display any
systematic differences between time series acquired from different subjects,
i.e. if there are batch effects. Figure 3.5 depicts two-dimensional t-SNE
representations of positive mode MS time series obtained from ten sub-
jects (shown in different colours). Note, that plots are provided for raw,
normalised and smoothed and fully pre-processed data, see Figures 3.5(a),
3.5(b) and 3.5(c), respectively. t-SNE visualisation of raw data in Figure 3.5(a)
clearly shows a clustering that is driven by subjects, since points consistently
group by colour. This suggests that batch effects are present in the original
data. It appears that after internal standards normalisation and smoothing
data points from different subjects are not separated as well anymore (see
Figure 3.5(b)). After standardisation, the clustering is even less visible in
Figure 3.5(c); as can be seen, points of different colours are intermixed.

Similar observations can be made based on the PCA visualisations of the log-
transformed time series provided in Figure A.1 in Appendix A. A substantial
amount of variance in the first two principal components could be attributed
to batch effects. Note, that the difference between non-standardised and
standardised data is even more prominent in these representations than with
t-SNE, see figures A.1(b) and A.1(c). We performed the same analysis for
the negative ion mode time series. It revealed similar patterns as shown in
figures A.2 and A.3 from Appendix A.

In conclusion, two-dimensional t-SNE and PCA visualisations of the MS
data suggest that there might be unwanted variability between biological
replicates because of differences between subjects. Nevertheless, time series
standardisation appears to successfully alleviate batch effects, thus, facilitat-
ing meaningful comparison of sleep stages across all subjects.
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(a) (b)

(c)

Figure 3.5: Two-dimensional t-SNE representations of the positive mode MS time series. Each
point corresponds to one mass spectrum sampled at some time. Samples are treated completely
independently. Figure 3.5(a) was produced from the raw data, 3.5(b) shows data after nor-
malisation and smoothing, finally, 3.5(c) depicts points after all pre-processing steps, including
standardisation. Different colours correspond to ten subjects.

3.3.2 Differences between Sleep Stages

Herein, we examine visualisations of the MS data to see if there exist any
straightforward systematic differences between mass spectra sampled dur-
ing different phases of sleep.

To begin with, there is a pronounced imbalance between frequencies of sleep
stage labels. In particular, NREM phases (N1, N2 and N3) are more prevalent
than wakefulness (W) and REM sleep (R). Tables 3.1 and 3.2 provide frequen-
cies of sleep stage labels alongside with average lengths and frequencies of
phases for positive and negative modes, respectively. It is also noteworthy,
that positive mode measurements have considerably more time points la-
belled as wakeful (26.57%) than the negative mode (11.60%). This is because
positive mode recordings include two subjects that were awake for unusu-
ally long periods of time. For the same reason, the average duration of this
phase is two times larger in the positive mode than in negative.
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Sleep
Stage
Label

Label
Frequency

Label
Percentage, %

Average
Duration of

Stage, s

Stage
Frequency

W 9,523 26.57 935 102
N1 1,843 5.14 233 79
N2 14,536 40.56 720 202
N3 5,980 16.69 564 106
R 3,955 11.04 899 44

Table 3.1: Distribution of sleep stage labels, stages and their duration in the positive ion mode.

Sleep
Stage
Label

Label
Frequency

Label
Percentage, %

Average
Duration of

Stage, s

Stage
Frequency

W 3,480 11.60 529 66
N1 1,086 3.62 213 51
N2 13,310 44.37 783 170
N3 6,652 22.18 739 90
R 5,469 18.23 1,139 48

Table 3.2: Distribution of sleep stage labels, stages and their duration in the negative ion mode.

Figure 3.6 depicts two-dimensional t-SNE representations of pre-processed
positive mode MS time series acquired from three different subjects. Note,
that points are coloured according to synchronised sleep stage labels. t-
SNE representations in these plots do not feature a consistent clustering
driven by sleep phases. The same holds true for the rest of subjects that
are not considered here. Moreover, negative mode data do not appear to
feature systematic differences between sleep stages either, see Figure A.4 in
Appendix A. Similar conclusions can be made based on the PCA. First two
principal components, shown in figures A.5 and A.6 in Appendix A, do not
reveal clear differences between mass spectra during wakefulness, NREM
and REM phases.

In addition, we inspect the ordering of data points w.r.t. time. Clusters
observed in t-SNE in figures 3.6 and A.4 could be attributed to the time
structure. Observe that chronologically consecutive or closely neighbouring
points are usually grouped together. This pattern is revealed when connect-
ing consecutive points with line segments, as in the plots on the right side of
Figure 3.6. This structure may be associated with a trend component that is
present in the time series of many ions. For example, the time series in Fig-
ure 3.2 contains a mild trend that is visible in the beginning. Potentially, this
may introduce biases when performing sleep stage classification based on
ion intensities. It might be easier to correctly classify points from some stage
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(a) Subject 2

(b) Subject 6

(c) Subject 10

Figure 3.6: Two-dimensional t-SNE representations of the MS time series in the positive ion
mode for three subjects. In plots on the left side, points are coloured according to their sleep
stage labels: orange, blue and green colours correspond to wakefulness, NREM and REM phases,
respectively. Plots on the right side contain the same t-SNE representations, however, points
that are consecutive w.r.t. time are connected by line segments.
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due to their contiguity in time, rather than systematic differences between
classes.

To sum up, t-SNE and PCA visualisations of MS data show no consistent
clustering of data points that is driven by sleep stages. However, t-SNE
reveals a grouping of points w.r.t. the time of their acquisition. This might
be explained by trend components of ion intensity time series and could
bias predictions of sleep stage labels based on mass spectra.
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Chapter 4

Inferring Granger Causality with
Neural Networks

To tackle the main problem of the thesis, we adopt the approach of Granger
causality (see Subsection 2.3.1). As a result, one of the methodological con-
tributions of this thesis is the development of a model for the estimation of
multivariate Granger causality based on neural networks (see Section 2.4).
Its key advantages are that (i) it can capture nonlinear non-additive interac-
tions; (ii) it provides a principled way of dealing with ‘mixed’ time series
which contain both categorically- and continuously-valued variables; and
that (iii) it is scalable. In this chapter, we review related work, introduce our
approach and show how we can quantify uncertainty about causal relation-
ships within the proposed model.

Throughout this chapter we consider a multivariate time series consisting of
target {Yt}t∈{1,...,T} and predictor variables

{
X j

t

}
t∈{1,...,T}

, for j = 1, ..., p− 1.

Herein all time series can be either categorically- or continuously-valued.
The problem that we want to tackle is to find the set of all predictors which
Granger-cause the response, i.e. identify Sin =

{
j : X j −→ Y

}
.

4.1 Related Work

Many ‘real world’ time series exhibit nonlinear relationships, e.g. in ge-
nomics and neuroscience [73]. Therefore, a plenty of nonlinear techniques
for identifying Granger-causal interactions were proposed [2, 48, 69, 53, 24,
55, 77, 73], to avoid inconsistencies resulting from model misspecification.
Researchers have argued in favour of using neural networks due to their
flexibility when compared to other conventional model-based approaches
[53]. For example, some nonlinear methods [59, 69] employ generalised ad-
ditive models (GAM) [32] and, thus, assume the absence of between-variable
non-additive interaction terms. In contrast to GAMs, approaches based on
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4. Inferring Granger Causality with Neural Networks

neural networks do not make such rigid assumptions [53, 77, 73]. Given the
success of neural networks at various predictive tasks, this class of models
is a compelling choice for flexibly representing autoregressive relationships
in multivariate time series.

4.1.1 Time Series Forecasting with MLP

In order to infer Granger causes of target time series Yt, techniques described
in the literature [53, 77, 73] fit some neural network model to forecast the
future of Y based on the past values of X j. A simple two-layer feedforward
network with the continuously-valued output is given by the following equa-
tion [21]:

ŷt = ho

{
w(2)

10 +
M(1)

∑
i=1

w(2)
1i h(1)

{
w(1)

i0 +
p−1

∑
j=1

K

∑
k=1

w(1)
i((j−1)K+k)x

j
t−k

+
K

∑
k=1

w(1)
i((p−1)K+k)yt−k

}}
,

(4.1)

where M(1) is the size of the hidden layer; and h(1) and ho are activation
functions at hidden and output units, respectively. Note, that forecast ŷt is
constructed from K past values of all predictors X j and of the target. Thus,
this MLP has pK inputs. To infer Granger causality, we need to identify
those predictors that are useful in constructing the forecast. This problem
has been addressed in various ways in the literature.

4.1.2 Neural Networks with Non-uniform Embedding

Montalto et al. proposed neural networks with non-uniform embedding
(NUE) [53]. In this approach, significant Granger causes are identified using
the NUE, a feature selection procedure. Initially, the multilayer perceptron
for predicting the future of the target time series contains only one input. It
is then iteratively grown by greedily adding lagged predictor components
as inputs. The best possible addition is made only if it improves the perfor-
mance of the model according to the criteria specified in [53]. Once stopping
conditions are satisfied, a predictor time series is claimed a significant cause
of the target if at least one of its lagged components was added as an input.
An important advantage of this technique is that, alongside with causes, it
identifies lags at which causal interactions occur. Even though the proce-
dure employs the warm-start approach and resilient back-propagation for
training neural networks [53], it is computationally expensive, especially, in
a high-dimensional setting, since it requires fitting and comparing many
candidate models.

Wang et al. extended the method proposed in [53] by replacing MLPs with
long short-term memory networks [77], while still using the NUE for select-
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ing significant causes. As opposed to MLPs, LSTMs do not require specify-
ing the model order, i.e. the maximum lag at which causal interactions occur,
because, as explained in Subsection 2.4.2, recurrent neural networks store in-
formation about the past of the input sequence in hidden states. Moreover,
due to parameter sharing, fitting LSTMs requires estimating much less pa-
rameters than for multilayer perceptrons. The approach based on recurrent
neural networks was shown to be superior to MLPs in terms of compu-
tational cost and performance [77]. Nevertheless, it still involves iterative
fitting of prohibitively many augmented models.

4.1.3 Deep Feature Selection

A noteworthy feature selection procedure for feedforward neural networks
is deep feature selection (DFS) proposed by Li et al. in [42]. Even though
it was originally considered in the context of classification, the DFS can
be useful for identifying Granger causes. It is achieved by introducing a
weight for each feature [42], which is applied to the corresponding input
prior to feeding it into the MLP. The sparsity of these weights is encouraged
by adding a penalty term to the loss function. Similarly to the elastic net
[82], the penalty consists of L1 and L2 norms of the weight vector. Thus,
shrinkage of weights towards zero results in selecting some features, while
‘knocking out’ other.

4.1.4 Componentwise MLPs and LSTMs

Tank et al. proposed a method for estimating Granger causality with MLPs
and RNNs, which utilises regularisation in a manner similar to the deep
feature selection [73]. Before we explain this approach, we need to introduce
some additional notation for the MLP given by Equation 4.1. Observe that
this equation can be rewritten in the following matrix form:

ŷt = ho

{
w(2)

10 +
M(1)

∑
i=1

w(2)
1i

(
h(1)

{
w(1)

0 +
K

∑
k=1

W(1)
k xt−k

})
i

}
, (4.2)

where xt−k =
[

x1
t−k x2

t−k · · · xp−1
t−k yt−k

]>
; W(1)

k ∈ RM(1)×p is a matrix
with the first layer weights corresponding to time series values at lag k; and

w(1)
0 =

[
w(1)

10 w(1)
20 · · · w(1)

M(1)0

]>
is a vector consisting of biases from the

first layer. Note, that herein activation function h1(·) is applied elementwise
to the vector of hidden layer activations.

The intuition behind the method discussed in [73] is that, by introducing
the group Lasso penalty on the first layer, weights of non-causal predictors
should be shrunk towards zero. The loss function [73], for a continuous
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response, is given by

T

∑
t=K+1

(yt − ŷt)
2 + λ

p

∑
j=1

∥∥∥∥[(W(1)
1

)
:j

(
W(1)

2

)
:j
· · ·

(
W(1)

K

)
:j

]∥∥∥∥
F

, (4.3)

where
(

W(1)
k

)
:j

denotes the j-th column of matrix W(1)
k ; and

‖A‖F =

√√√√ n

∑
i=1

m

∑
j=1

∣∣∣(A)ij

∣∣∣2
is the Frobenius norm of matrix A ∈ Rn×m. As can be seen, the penalty term
groups the weights of the first layer according to a predictor time series they
correspond to. Tank et al. refer to this specialised model as a componentwise
multilayer perceptron (cMLP). In addition, the authors proposed a compo-
nentwise long short-term memory network (cLSTM) that, similarly to cMLP,
encourages sparse inputs, but has a recurrent network architecture [73].

An important advantage of these componentwise networks over the non-
uniform embedding, discussed in the previous subsection, is their scalabil-
ity. Rather than iteratively fitting and comparing augmented models, this
method needs to fit only one regularised model to infer all causes of the
target series. Therefore, this technique can be particularly helpful when
performing causal analysis of high-dimensional time series.

4.2 Model

Inspired by componentwise MLPs [73], we propose another feedforward
neural network architecture for identifying Granger causes of the target
time series. For the sake of convenience, we will henceforth refer to it as
Granger causal multilayer perceptron (GC-MLP). We utilise Lasso regularisa-
tion to avoid costly comparison between augmented models. In contrast to
cMLPs, sparsity is not encouraged in the first layer, but in the middle of the
network.

We define the model assuming that response Y and all predictors X j are
continuously-valued. However, this definition can be easily extended to the
‘mixed’ case, as we will subsequently show. Figure 4.1 depicts the schematic
of a GC-MLP with a continuously-valued output. As can be seen, it is a
feedforward network consisting of separate sub-networks, one per each pre-
dictor, which are then fused together to compute the final output.

The model forecasts value yt based on K past values of time series X1
t , ..., Xp−1

t
and Yt itself. Herein, we will explain how this forecast is constructed. Let
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Figure 4.1: The schematic of a feedforward neural network for identifying Granger causes of

continuously-valued time series Yt among continuously-valued X1
t , X2

t , ..., Xp−1
t . It consists of

sub-networks per each predictor which take lagged time series values as inputs. Subsequently,
multidimensional outputs of these sub-networks are weighted, concatenated and fed into another
MLP to compute final forecast ŷt. Note, that biases are omitted.

xj =
[

xj
t−1 xj

t−2 · · · xj
t−K

]>
be a vector containing K past values of time

series X j
t, for j = 1, ..., p− 1, likewise, let y =

[
yt−1 yt−2 · · · yt−K

]>. Each
xj and y are fed as inputs into sub-networks to compute multidimensional
output vectors

vj = h(2)
(

w(2)j
0 + W(2)

j h(1)
(

w(1)j
0 + W(1)

j xj
))

, for j = 1, .., p− 1, (4.4)

and

vp = h(2)
(

w(2)p
0 + W(2)

p h(1)
(

w(1)p
0 + W(1)

p y
))

, (4.5)

where W(1)
j ∈ RM(1)×K and W(2)

j ∈ RM(2)×M(1)
are matrices with weights

of layers 1 and 2, respectively, in the j-th sub-network; w(1)j
0 ∈ RM(1)

and

w(2)j
0 ∈ RM(2)

are vectors with biases of layers 1 and 2, respectively; and
h(1)(·) and h(2)(·) are activation functions that are applied elementwise.
Note, that all sub-networks have the same sizes of layers. Subsequently,
output vectors vj are weighted and concatenated to form one large vector
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with pM(2) components

v =


c1v1

c2v2

...
cpvp

 (4.6)

Note, that c =
[
c1 c2 · · · cp

]> are weights assigned to each variable. Vec-
tor v is then used as an input for the MLP that computes the final forecast

ŷt = ho
(

w(4)
10 + w(4)h(3)

(
w(3)

0 + W(3)v
))

, (4.7)

where W(3) ∈ RM(3)×pM(2)
is a matrix with weights of layer 3 and w(4) ∈

R1×M(3)
is a row vector with weights of layer 4; w(3)

0 ∈ RM(3)
is a vector with

biases of layer 3 and w(4)
10 is the bias of the last layer. When forecasting a

continuously-valued time series, we use the identity function ho(x) = x at
the output.

The loss function of GC-MLP is crucial for estimating Granger causality. In
particular, it encourages weights c to be sparse by using an elastic-net-style
penalty term [82], like in the deep feature selection [42]. Let θ denote an
ordered set of all parameters. Then, for continuously-valued targets, fitting
a GC-MLP requires solving the following optimisation problem:

min
θ

T

∑
t=K+1

(yt − ŷt)
2 + λ

(
α‖c‖1 + (1− α)‖c‖2

2
)

, (4.8)

where α ∈ [0, 1] is a hyperparameter that controls the trade-off between L1

and L2 penalties. Intuitively, we expect that, if time series X j
t is non-causal,

then weight cj will be shrunk towards zero. In the following chapter (see
Chapter 5), we perform several controlled experiments to demonstrate that
the neural network behaves as expected in that regard.

4.2.1 Including Categorically-valued Time Series

Now let us consider the case wherein target series Yt is categorically-valued
and takes on values in {1, 2, ..., C}. This series can be represented using one-
hot encoding. In particular, rather than having one sub-network for Yt, as
before, we introduce a sub-network for each Y j

t = 1{Yt=j}, for j = 1, ..., C,
which are treated as separate variables. Another important adjustment is
made to the output. To predict probabilities of different classes, the network
should have C outputs, and the output activation function should be softmax
(see Equation 2.10). Finally, the loss function is changed as well, we use the
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cross-entropy loss instead of the sum-of-squares:

−
T

∑
t=K+1

C

∑
j=1

γj

{
yj

t ln
(
(ŷt)j

)
+
(

1− yj
t

)
ln
(

1− (ŷt)j

)}
+λ

(
α‖c‖1 + (1− α)‖c‖2

2
)

,

(4.9)

where γj is the weight for class j. Weighted loss can be useful when there
exists an imbalance between class frequencies [43]. Namely, we can encour-
age higher sensitivities for infrequent categories by assigning larger weights
to them.

Another possible case is when one or several predictors X j
t are categorically-

valued. In this setting, we can use one-hot encoding to represent such pre-
dictor time series, in the same way as was explained above for representing
a categorically-valued target. Finally, we can also account for having both
categorically-valued predictors and the target by implementing all adjust-
ments described in this subsection.

4.2.2 Important Hyperparameters

As can be seen from the description above, the GC-MLPs have several hy-
perparameters. Some of them might strongly affect the performance of the
model at causal inference, namely:

• Regularisation parameter λ controls the sparsity of weight vector c and,
thus, intuitively, should be associated with the number of falsely dis-
covered causes. When λ is chosen too large, we expect less false dis-
coveries to be made at the cost of a lower power. On the other hand,
with λ too small, we expect the method to make many false discover-
ies, but have a high power. We investigate the relationship between λ
and false discoveries in one of the experiments in Chapter 6.

• Model order K determines the maximum lag at which dependencies are
considered. Choosing K too small can result in model misspecification,
because long-term regressive dependencies might not be captured by
the model. However, choosing K too large may lead to overfitting and,
consequently, inferring spurious causal relationships.

4.2.3 Implementation Details

To estimate the parameter of interest – weight vector c, we need to minimise
the penalised loss function (see Equations 4.8 and 4.9). This optimisation
problem is addressed by performing gradient descent, either stochastic or
mini-batch. In particular, we employ the implementation of Adam optimiser
[39] by PyTorch machine learning library [56]. A disadvantage of gradient
descent procedures is that obtained parameter estimates do not converge to
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4. Inferring Granger Causality with Neural Networks

exact zeros. In practice, when identifying causality, variable weights have
to be thresholded. An important hyperparameter of the optimiser is the
learning rate which determines the size of steps made during optimisation.
This parameter alongside with the number of passes through training data,
or the number of epochs, is crucial for the quality of causal inference.

We implemented the model in Python programming language (version 3.7.1)
using PyTorch machine learning library (version 1.0.1) [56]. Code for the
custom PyTorch Module that constructs a GC-MLP is provided in Appendix
B in Listing B.1. Observe that in this implementation layers 1 and 2 have
equal sizes in all sub-networks, and that all hidden units have ReLU activa-
tion functions. In order to mitigate overfitting, we allow the application of
dropout [72] in all layers. This technique prevents co-adaptation of units in
neural networks by zeroing out randomly chosen connections.

Last but not least, note, that weight vector c is initialised differently from the
rest of weights, for which Xavier method is used [27]. Each cj is drawn in-

dependently from N
(

1
p , σ2

c

)
, where p is the number of variables, including

the response, and variance σ2
c is chosen to be very small. During experimen-

tation, we observed that such initialisation scheme leads to less variability
in the results due to differences at the start and faster convergence to the
correct causal structure.

4.2.4 LSTMs

Like componentwise MLPs [73], our network architecture can be easily ad-
justed to leverage long short-term memory networks for inferring Granger
causality. Feedforward sub-networks for each predictor variable can be re-
placed by LSTMs. We will henceforth refer to this architecture as Granger
causal long short-term memory (GC-LSTM).

A simple LSTM network with input time series value xj
t is given by equations

[73]:
fj

t = σ
(

w f
j xj

t + U f
j hj

t−1

)
,

ij
t = σ

(
win

j xj
t + Uin

j hj
t−1

)
,

oj
t = σ

(
wo

t xj
t + Uo

j hj
t−1

)
,

cj
t = fj

t � cj
t−1 + ij

t � σ
(

wc
j x

j
t + Uc

j h
j
t−1

)
,

hj
t = oj

t � σ
(

cj
t

)
,

(4.10)

where fj
t, ij

t, oj
t are forget, input and output gates, respectively; cj

t is the cell
state; hj

t is the hidden state; σ(·) is an activation function applied element-
wise; and � is the elementwise multiplication operator. Note, that we omit-
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ted biases to simplify notation. To infer Granger causality, such LSTM is
constructed for each predictor time series and the target, i.e. for j = 1, ..., p.
Subsequently, we apply variable weights to hidden states of all LSTM sub-
networks and concatenate them into one vector:

vt =


c1h1

t
c2h2

t
...

cphp
t

 (4.11)

Finally, vector vt is fed into the two-layer perceptron to compute the forecast
for yt+1 (similarly to Equation 4.7). When training GC-LSTMs, the same pe-
nalised objective is used as for the feedforward architecture, see equations
4.8 and 4.9. The implementation of the GC-LSTM model is provided in List-
ing B.2 in Appendix B. We do not discuss this approach in further chapters
and only focus on MLPs.

4.3 Quantifying Uncertainty

As a result of fitting a GC-MLP (or GC-LSTM), we get one point estimate
of weight cj for each predictor variable. If the absolute value of this weight
is significantly larger than 0, then we expect X j to Granger-cause Y. Never-
theless, it would be desirable to obtain a measure of uncertainty about the
statement of causality. It is especially important in the presence of biolog-
ical variability due to possible inter-subject differences. In this section, we
explain a procedure that uses independent replicates of time series to con-
struct lower confidence bounds on variable weights in c. It is based on the
bootstrapping method proposed by B. Efron in [18].

Bootstrapping is a non-parametric technique for estimating the sampling
distribution of an arbitrary statistic based on the observed data [18]. The dis-
tribution is estimated be evaluating the statistic on data points re-sampled
with replacement from the original dataset. Subsequently, confidence inter-
vals (CI) can be constructed based on the bootstrapped values. This power-
ful method is applicable to parameters of regression [22] and classification
models and, thus, can be leveraged to estimate the distribution of weights
cj in GC-MLPs. The technique explained further is essentially an adaptation
random-x re-sampling for regression, as described in [22].

Algorithm 1 contains the pseudocode of the procedure for discovering Granger
causes of the given target series. The neural network model is trained
B times on re-sampled data. It is important to note, that rather than re-
sampling individual data points, we re-sample entire time series replicates.
This adjustment is made to the classical method presented in [22], because
points within one time series are, possibly, not independent. Moreover, we
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Algorithm 1: Bootstrapping procedure for discovering Granger causal-
ity.

Input: N replicates of target time series {Yt}t∈{1,...,T} and predictors{
X j

t

}
t∈{1,...,T}

, j = 1, .., p− 1; regularisation parameter λ;

threshold cth > 0; significance level α ∈ (0, 1); number of
re-samples B ∈N.

Output : Set Ŝλ
in of predictor variables that Granger-cause Y.

Ŝλ
in ← {}

// Compute bootstrapped weights

for b = 1 to B do
Sample N replicates Ib = {ib

1, ..., ib
N} with replacement from

I = {1, ..., N}.
Train the neural network on time series replicates in Ib with

regularization parameter λ.
Retrieve absolute values of weights c∗b1 , ..., c∗bp−1 in c from the fitted
model.

end
// Choose causal variables

for j = 1 to p− 1 do
Compute empirical α-quantile of bootstrapped weights for the j-th
variable qj := qc∗j (α)

if qj ≥ cth then
Ŝλ

in ← Ŝλ
in ∪ {j}

end

return Ŝλ
in

expect that this re-sampling scheme would allow accounting for biological
variability between replicates and help to discover those causal relationships
that stay invariant across all subjects.

After B neural networks are fitted and absolute values of bootstrapped vari-
able weights are retrieved, we construct a lower confidence bound for each
weight. This bound is given by the left end-point of the 100(1− 2α)% boot-
strap quantile CI [35] (we use twice the significance level, because we are
only interested in the left end-point). This confidence interval is built from
empirical quantiles of the bootstrapped statistic [35]. There exist other boot-
strap CIs which are, in certain aspects, superior to the quantile interval.
However, as opposed to several other methods, quantile CI is appropriate
for skewed distributions. Since we consider absolute values of weights, their
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(a) Histogram of bootstrapped weights
for the ion with 69.07 m/z.

(b) Histogram of bootstrapped weights
for the ion with 194.13 m/z.

Figure 4.2: Histograms of B = 1000 bootstrapped absolute values of weights for two ions used
as predictors for the sleep stage time series. Observe that both histograms are right-skewed.
Also note, that in Figure 4.2(a) most values are significantly greater-than zero, whereas in Figure
4.2(b) most weights are clearly shrunk towards zero. It appears that the ion with 69.07 m/z
could be causal, whereas the ion with 194.13 m/z is not.

distributions could be skewed. For example, Figure 4.2 depicts histograms
of bootstrapped absolute weights for two different ions that were used as
predictors for the sleep stage. Note, that the histogram in Figure 4.2(b) is
strongly right-skewed.

Finally, causal predictors are chosen based on the constructed lower bounds.
A variable is claimed to be a Granger cause of the target if the lower bound
for its absolute weight is greater-than-or-equal-to specified threshold cth.
When selecting causal variables in a high-dimensional setting, the multiple
testing problem occurs [33]. That can lead to the inflation in the number
of false discoveries. Therefore, parameters λ, α and cth need to be chosen
carefully to ensure an acceptable number of errors.

A significant limitation of the presented procedure is the assumption of hav-
ing multiple. In many cases, we observe a multivariate time series only once,
and, therefore, cannot apply the bootstrap method directly. A pragmatic so-
lution to this problem would be to split the sequence into several (equally
long) segments and treat them as independent replicates. This approach is
clearly not ideal, because sub-sequences are not fully independent. How-
ever, if the observed time series is sufficiently long, this ‘trick’ appears to be
sensible.

4.4 Discovering Effects by Reversing Time

So far, we have treated the problem of discovering a set of predictor time
series that cause the given target. We might be interested in considering
an inverse problem: given observations of target time series {Yt}t∈{1,...T}
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and predictors
{

X j
t

}
t∈{1,...,T}

, for j = 1, ..., p− 1, we seek to find set Sout ={
j : Y −→ X j} of predictors that are Granger-caused by Y.

The naı̈ve solution to the problem is straightforward. We have to fit p GC-
MLPs for each time series X j

t as a response and identify if Yt Granger-causes
X j

t. In the high-dimensional multivariate time series, this approach can be
prohibitively costly. A promising solution is to consider time-reversed se-
quences instead.

Let Ỹt and X̃ j
t denote time reverses of series Yt and X j

t, respectively. In order
to estimate Sout, we suggest to train a GC-MLP with Ỹt as a response and
X̃ j

t as predictors. Intuitively, we expect this network to discover if the future
values of X j

t are useful for predicting the past values of Yt. We expect that
variable weights are shrunk towards zeros for those X̃ j

t such that Y 6−→ X j.
Thus, instead of naı̈vely fitting p models, we potentially need only one GC-
MLP to estimate the set of Granger effects.

To our knowledge, there is little literature on the topic of time-reversed
Granger causality (TRGC) and its validity. In [79], the authors prove the
validity of certain tests for TRGC in a bivariate case for the vector autoregres-
sive model. The time reversal technique in the multivariate case is merely
a ‘trick’ without known theoretical guarantees. We investigate the empirical
performance of this method on synthetic data in the next chapter in Section
5.7.
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Chapter 5

Simulation Experiments

In this chapter we describe experiments that were performed on artificial
datasets. Since the model described in Chapter 4 has no theoretical guar-
antees for correctly discovering Granger causal relationships, it is of utmost
importance to test its performance in a controlled setup. We consider several
examples of multivariate time series with varying degrees of complexity of
regressive relationships.

Additionally, we compare our neural network technique to linear Granger
causality inference with the VAR model, which serves as a baseline method.
We use the implementation of the VAR and F-tests for Granger causality
available in statsmodels (version 0.10.0) library [66] for Python. To mitigate
the multiple comparisons issue and control the false discovery rate (FDR),
we apply Benjamini-Hochberg procedure [4] to F-test p-values.

We use areas under the receiver operating characteristic curve (AUROC) and
the precision-recall curve (AUPR) [13] to assess the performance of methods.
The latter measure could be more appropriate for causal structure learning
algorithms, because the underlying causal graphs are often quite sparse, and
AUPR is fairer than AUROC in classification problems with a class imbal-
ance [13]. These metrics were chosen over, for instance, accuracy, because
the GC-MLP model evaluates causality via variable weights given by c that
are numerical, rather than binary. For the VAR model, we use F-test p-values
for computing AUROC and AUPR.

5.1 Linear Autoregressive Model

In this experiment, we consider a trivariate time series with linear autore-
gressive relationships and additive Gaussian noise. We generate 100 syn-
thetic datasets with one replicate of the time series 500 steps long. We repeat
the experiment for sequences 1,000 and 5,000 points long. Time series are
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Method
Average AUROC(±2SD)

T = 500 T = 1000 T = 5000
VAR 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

GC-MLP 0.956(±0.179) 0.983(±0.111) 0.998(±0.044)

Table 5.1: Average AUROCs and standard deviations for VAR and GC-MLP models for time
series with lengths (T) 500, 1,000 and 5,000 generated from the linear autoregressive model
given by equations 5.1.

Method
Average AUPR(±2SD)

T = 500 T = 1000 T = 5000
VAR 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

GC-MLP 0.972(±0.105) 0.989(±0.066) 0.999(±0.026)

Table 5.2: Average AUPRs and standard deviations for VAR and GC-MLP models for time series
with lengths (T) 500, 1,000 and 5,000 generated from the linear autoregressive model given by
equations 5.1.

drawn independently from the autoregressive model given by the following
equations:

Xt = a1Xt−1 + NX,t,
Yt = a2Yt−1 + a3Xt−2 + a4Wt−1 + NY,t,

Wt = a5Wt−1 + a6Xt−1 + NW,t,
(5.1)

where ai ∼ U ([−0.8,−0.2] ∪ [0.2, 0.8]) are coefficients sampled independently
for each dataset; and N·,t ∼ N (0, 1) are innovation terms. Note, that all
causal interactions occur at the lag of at most 2. The correct causal summary
graph is given by edges {X −→ Y, X −→ W, W −→ Y}. GC-MLPs that we
fitted had 30 units in layers 1 and 2 (in each sub-network), and 30 units in
layer 3. We chose λ = 0.1, α = 0.8 and K = 5. The network was trained for
one epoch using the SGD with the learning rate of 0.001. VAR models were
fitted with the maximum lag of 5.

Tables 5.1 and 5.2 contain average AUROCs and AUPRs, respectively, for
VAR and GC-MLP models. VAR is superior to GC-MLP in terms of both
ROC and PR curves. It infers the correct causal structure in all 100 synthe-
sised datasets for all time series lengths. Differences in performance mea-
sures for T = 500, 1000 are statistically significant (paired t-test p < 0.05).
Nevertheless, the magnitude of differences is not particularly large. In gen-
eral, these results are not unexpected, because in this experiment the VAR
model is appropriate due to the linearity of causal relationships. Given that
the VAR requires estimating less parameters and there is no model misspeci-
fication, it is sensible that it outperforms neural networks on limited training
data. We can also see that the performance of the GC-MLP improves slightly
when given longer sequences.
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Method
Average AUROC(±2SD)

T = 500 T = 1000 T = 5000
VAR 0.550(±0.704) 0.500(±0.725) 0.545(±0.726)

GC-MLP 0.920(±0.545) 1.000(±0.000) 1.000(±0.000)

Table 5.3: Average AUROCs and standard deviations for VAR and GC-MLP models for time
series with lengths (T) 500, 1,000 and 5,000 generated from the nonlinear autoregressive model
given by equations 5.2.

Method
Average AUPR(±2SD)

T = 500 T = 1000 T = 5000
VAR 0.650(±0.461) 0.630(±0.441) 0.655(±0.465)

GC-MLP 0.960(±0.273) 1.000(±0.000) 1.000(±0.000)

Table 5.4: Average AUPRs and standard deviations for VAR and GC-MLP models for time series
with lengths (T) 500, 1,000 and 5,000 generated from the nonlinear autoregressive model given
by equations 5.2.

5.2 Nonlinear Autoregressive Model

This experiment demonstrates that, in general, model misspecification can
lead to inferring an incorrect time series causal structure. We synthesise 100
datasets with sequence lengths of 500, 1,000 and 5,000 from the following
bivariate autoregressive model due to [59]:

Xt = −0.5Xt−1 + 0.4NX,t,

Yt = −0.5Yt−1 + (Xt−1)
2 + 0.4NY,t,

(5.2)

where N·,t ∼ N (0, 1) are innovation terms. The summary causal DAG has
one edge X −→ Y. We use the same parameters for performing causal time
series analysis as in Section 5.1.

Tables 5.3 and 5.4 provide average AUROCs and AUPRs, respectively, for
the two inference techniques. The GC-MLP significantly outperforms the
VAR for all lengths. For T = 500, the neural network approach identifies
the correct causal graph in 92% of cases, whereas for sequences 1,000 and
5,000 points long it converges to the true structure in all simulated datasets.
F-tests, on the other hand, yield correct conclusions in only, approximately,
30% of datasets. These results suggest that a nonlinear approach to identi-
fying Granger causal relationships can be beneficial when compared to the
conventional linear technique.

Let us examine neural network variable weights and adjusted F-test p-values
obtained from time series with 5,000 points. Figure 5.1 depicts box plots of
absolute values of weights and p-values. The GC-MLP correctly identifies
that X drives Y, but Y does not cause X by shrinking most weights for
Y −→ X towards zero, as we would expect. The VAR, on the other hand,
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(a) Absolute values of variable weights
for GC-MLPs.

(b) F-test p-values from the VAR.

Figure 5.1: Box plots of GC-MLP weights and VAR p-values derived from 100 synthetic datasets
with sequences 5,000 time steps long generated from the autoregressive model given by equations
5.2. Weights and p-values are provided for two candidate causal relationships X −→ Y and
Y −→ X.

fails to infer the correct structure, since p-values for X −→ Y are frequently
greater-than p-values for Y −→ X. Ideally, all p-values for tests on X −→ Y
should be less-than p-values for Y −→ X.

5.3 Nonlinear Autoregressive Model with Non-additive
Interaction

Herein, we consider an autoregressive bivariate time series model with a
non-additive interaction term. This example is due to Peters et al. and is
taken from [59]. The time series is defined by the following equations:

Xt = 0.2Xt−1 + 0.9NX,t,

Yt = −0.5 + exp
(
− (Xt−1 + Xt−2)

2
)
+ 0.1NY,t,

(5.3)

where N·,t ∼ N (0, 1) are innovation terms. The true summary graph is
given by edge set {X −→ Y}. Observe that past values of X drive Y via non-
additive interaction term exp

(
− (Xt−1 + Xt−2)

2
)

. When training neural net-
works and fitting the VAR model, the same parameter values were used as
in the experiment described in Section 5.1. We generated 100 datasets with a
single replicate of the bivariate series 500, 1,000 and 5,000 time points long.

Average AUROCs and AUPRs are shown in tables 5.5 and 5.6, respectively.
On these data the performance of the GC-MLP is significantly superior to
the VAR in terms of both curves. Neural networks converge to the cor-
rect structure in all datasets for time series of all lengths. This experiment
demonstrates that the proposed method can account for non-additive inter-
actions.
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Method
Average AUROC(±2SD)

T = 500 T = 1000 T = 5000
VAR 0.545(±0.712) 0.575(±0.730) 0.540(±0.748)

GC-MLP 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

Table 5.5: Average AUROCs and standard deviations for VAR and GC-MLP models for time
series with lengths (T) 500, 1,000 and 5,000 generated from the nonlinear autoregressive model
given by equations 5.3.

Method
Average AUPR(±2SD)

T = 500 T = 1000 T = 5000
VAR 0.650(±0.461) 0.675(±0.479) 0.660(±0.469)

GC-MLP 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

Table 5.6: Average AUPRs and standard deviations for VAR and GC-MLP models for time series
with lengths (T) 500, 1,000 and 5,000 generated from the nonlinear autoregressive model given
by equations 5.3.

5.4 Lorenz 96 Model

A benchmark that is often used to test Granger causality inference tech-
niques is the Lorenz 96 model [44] (for example, see [53] and [73]). It is a
continuous time dynamical system introduced by E. N. Lorenz in 1996 while
studying the physics of atmosphere [44]. The system consists of p variables
and is given by differential equations:

dXi
t

dt
=
(

Xi+1 − Xi−2
)

Xi−1 − Xi + F, (5.4)

where X0 = Xp, X−1 = Xp−1 and Xp+1 = X1; and F is a forcing constant that,
in combination with p, controls the chaos in the behaviour of the system. For
larger values of F, the system tends to behave chaotically [44]. Time series
can be obtained by numerical simulation with some fixed sampling rate [73].
The resulting causal structure is sparse (for p large) and features feedback,
i.e. it contains two-node cycles. The summary causal graph for p = 5 is
shown in Figure 5.2.

We simulate the Lorenz 96 system numerically with sampling rate ∆t = 0.01
and obtain time series 500 points long for p = 20 variables. We generate data
for two values of the forcing constant F = 10 and 40. In addition to VAR
and GC-MLP techniques, we also consider a random classifier that randomly
infers a causal relationship between each predictor and each target with the
probability of, approximately, 0.157 (this is the fraction of the number of
true causal interactions to the total number of possible interactions). In this
experiment we use slightly different parameter values when training GC-
MLPs. In particular, we set λ = 0.01 and use 50 hidden units in the third
layer instead of 30.
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Figure 5.2: The summary causal graph of time series obtained from the Lorenz 96 system with
p = 5 variables. Double-headed arrows correspond to feedback between two variables.

Method
Average AUROC(±2SD)

F = 10 F = 40
Random Classifier 0.500(±0.051) 0.505(±0.055)

VAR 0.922(±0.033) 0.745(±0.064)
GC-MLP 0.975(±0.017) 0.810(±0.072)

Table 5.7: Average AUROCs and standard deviations for random classifier, VAR and GC-MLP
models for time series 500 points long generated from the Lorenz 96 model (see Equation 5.4)
with F = 10 and 40.

Method
Average AUPR(±2SD)
F = 10 F = 40

Random Classifier 0.160(±0.014) 0.162(±0.055)
VAR 0.785(±0.077) 0.464(±0.010)

GC-MLP 0.901(±0.061) 0.546(±0.133)

Table 5.8: Average AUPRs and standard deviations for random classifier, VAR and GC-MLP
models for time series 500 points long generated from the Lorenz 96 model (see Equation 5.4)
with F = 10 and 40.

Tables 5.7 and 5.8 display average AUROCs and AUPRs, respectively, for
the three compared methods applied to 100 Lorenz 96 datasets. First, note,
that both VAR and GC-MLP techniques considerably outperform the ran-
dom classifier. Moreover, our method has, on average, noticeably higher
areas under ROC and PR curves than the vector autoregressive model, for
both values of the forcing constant. These differences in performance are
statistically significant (paired t-test p < 0.001). It also appears that both
VAR and GC-MLP have lower AUROCs and AUPRs for F = 40 than for
F = 10. This decrease is expected, since, as mentioned before, the Lorenz 96
system becomes chaotic and, therefore, less predictable for higher values of
the forcing constant.

Figure 5.3 contains parallel coordinates plots with AUROCs and AUPRs
of the the three considered methods. Every blue broken line in these plots
corresponds to one of the 100 simulated datasets; the Y coordinate of each of
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(a) F = 10

(b) F = 40

Figure 5.3: Parallel coordinates plots of AUPR and AUROC measures for the three methods
applied to the Lorenz 96 data. Figure 5.3(a) shows the results for datasets generated with the
forcing constant set to 10, whereas Figure 5.3(b) corresponds to F = 40. Note, that for the
AUROC axis labels start from 0.4, rather than 0. The bold black line is the median.

three points on the line equals-to to the performance measure of one method
on the dataset. Plots are provided for both forcing constant values. Observe
that broken lines feature a consistent increase in AUROC and AUPR values
from the random classifier to the VAR and from the VAR to the GC-MLP.
This is also reflected by median broken lines, shown in black. Note, that
the increase from the random classifier to the vector autoregressive model is
usually the steepest.

To conclude, this experiment shows that the proposed technique can deal
with the chaotic Lorenz 96 model. Even though it performs better than the
conventional VAR, F-tests for GC are quite resilient to nonlinearity in these
data. The results we obtained for the GC-MLP are on par with the average
AUROCs reported in [73] for the componentwise multilayer perceptron that
was tested in a similar setting.

5.5 Simulated fMRI Data

One possible application of Granger causal time series analysis is the inves-
tigation of interactions between different areas of the brain with the help
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Simulation
Number of
Variables

Sequence
Length

1 5 200
2 10 200
3 15 200
5 5 1,200
6 10 1,200
7 5 5,000

Table 5.9: Characteristics of the six fMRI data simulations chosen for the comparison of methods.
The number of each simulation is the same as its number in [30].

of functional magnetic resonance imaging (fMRI) [63]. In [71], Smith et al.
compare various brain network modelling approaches on simulated fMRI
signals. They use a realistic and rich model, based on the dynamic causal
modelling, for generating blood oxygenation level dependent (BOLD) time
series [71]. A detailed discussion of the model itself is beyond the scope of
the thesis, therefore, we refer the interested reader to [71] and [23]. Accord-
ing to the results presented in [71], approaches based on Granger causality
perform very poorly at inferring interactions between time series synthe-
sised from this model. Therefore, it is interesting to investigate if the GC-
MLP can improve upon conventional VAR F-tests.

In total, Smith et al. produced 28 simulations [71], each with 50 replicates of
multivariate time series. Datasets differ based on the numbers of variables,
lengths of sequences, connectivity structures, noise levels and other factors.
The synthetic data are available in [30]. In this section, we compare the
random classifier, VAR and GC-MLP models in terms of ROC and PR curves
on six chosen simulations. Table 5.9 contains basic specifications of these
simulations. As can be seen, we test techniques on time series with 5, 10 and
15 variables 200, 1,200 and 5,000 time steps long. When training GC-MLPs,
we use the same hyperparameter values as in the Lorenz 96 experiment (see
Section 5.4), apart from regularisation parameter λ that is set to 0.05. VAR
models are fitted with the maximum lag of 5.

Tables 5.10 and 5.11 show the comparison of the three techniques in terms
of AUROC and AUPR, respectively. They also contain adjusted paired t-test
p-values for the difference in performance measures between the GC-MLP
and the VAR. On average, in most simulations neural networks perform
better than F-tests. Differences in performance are statistically significant
for simulations 2, 3 and 6 w.r.t. AUROC and in simulations 1, 2, 3 and 6
w.r.t. AUPR. Nevertheless, in many cases differences are not extreme. It ap-
pears that using GC-MLP is more beneficial in datasets with more variables,
namely, in simulations 2, 3, and 6, which have 10 and 15 covariates. Note,
that with 5 variables both methods have quite large variances in areas under
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Sim.
Average AUROC(±2SD) t-test

p-valueRandom VAR GC-MLP
1 0.475(±0.226) 0.549(±0.282) 0.592(±0.364) ≥ 0.05
2 0.497(±0.100) 0.566(±0.182) 0.654(±0.165) < 0.0001
3 0.501(±0.059) 0.559(±0.178) 0.656(±0.142) < 0.0001
5 0.497(±0.235) 0.717(±0.279) 0.733(±0.278) ≥ 0.05
6 0.491(±0.103) 0.752(±0.176) 0.795(±0.171) < 0.05
7 0.497(±0.196) 0.799(±0.222) 0.791(±0.231) ≥ 0.05

Table 5.10: Comparison of average AUROCs and standard deviations on six fMRI data simu-
lations retrieved from [30]. The last column provides p-values from the paired t-test between
AUROCs of the GC-MLP and of the VAR.

Sim.
Average AUPR(±2SD) t-test

p-valueRandom VAR GC-MLP
1 0.272(±0.145) 0.349(±0.234) 0.444(±0.384) < 0.05
2 0.129(±0.028) 0.182(±0.143) 0.283(±0.188) < 0.0001
3 0.089(±0.013) 0.126(±0.081) 0.208(±0.115) < 0.0001
5 0.284(±0.143) 0.55(±0.348) 0.569(±0.39) ≥ 0.05
6 0.129(±0.030) 0.418(±0.265) 0.491(±0.272) < 0.0001
7 0.272(±0.107) 0.621(±0.301) 0.649(±0.278) ≥ 0.05

Table 5.11: Comparison of average AUPRs and standard deviations on six fMRI data simulations
retrieved from [30]. The last column provides significance of p-values from the paired t-test
between AUPRs of the GC-MLP and of the VAR. p-values were adjusted using the Bonferroni
correction.

both curves. Figure 5.4 depicts parallel coordinates plots of AUPRs for each
simulation. Parallel coordinates with AUROCs are given in Figure C.1 in
Appendix C. Observe that in most simulations the median line (plotted in
black) features an increase. However, slopes of blue lines from the VAR to
the GC-MLP are noticeably less consistent than in Lorenz 96 datasets.

Overall, from this experiment we see that neural networks are non-inferior
and even sometimes superior to Granger causality inference with VAR on
simulated realistic and rich fMRI time series. Nevertheless, their perfor-
mance is still quite poor. There might be several reasons that were men-
tioned in [71]. Namely, BOLD time series are characterised by a low signal-
to-noise ratio and by causal interactions with very small lags. Moreover, it
is important to note, that several datasets have only 200 points long time
series (simulations 1, 2 and 3) and, thus, represent a scenario of very limited
training data.
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(a) Simulation 1 (b) Simulation 2 (c) Simulation 3

(d) Simulation 5 (e) Simulation 6 (f) Simulation 7

Figure 5.4: Parallel coordinates plots of AUPR measures for the three methods applied to six
different simulations [30]. The bold black line corresponds to the median.

5.6 Categorically-valued Time Series

As mentioned before, the proposed model provides a principled way of ac-
counting for categorically-valued time series by replacing the sum-of-squares
term in the penalised loss with the cross-entropy and adjusting the output
layer. In this section we consider two examples with both continuously- and
categorically-valued variables.

5.6.1 Experiment 1

We first examine a trivariate time series given by the following equations:

Xt = 0.3Xt−1 + NX,t,
Wt = −0.6Wt−1 + 0.25Xt−1 − 0.5Yt−1 + 0.3NW,t,
Yt = 1{ 1

5 ∑5
j=1 Xt−j≥− 1

4},
(5.5)

where N·,t ∼ N (0, 1) are innovation terms. Note, that Xt and Wt are
continuously-valued, whereas Yt ∈ {0, 1} is binary-valued. The true sum-
mary causal graph has edge set {X −→W, X −→ Y, Y −→W}. In this ex-
ample all causal interactions are linear. Observe that classes given by Yt are
linearly separable based on the past values of Xt. We generate 100 datasets
from this time series model with sequences 500, 1,000 and 5,000 steps long.
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Method
Average AUROC(±2SD)

T = 500 T = 1000 T = 5000
VAR 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

GC-MLP 0.997(±0.038) 1.000(±0.000) 1.000(±0.000)

Table 5.12: Average AUROCs and standard deviations for VAR and GC-MLP models for time
series with lengths (T) 500, 1,000 and 5,000 generated from the model given by equations 5.5.

Method
Average AUPR(±2SD)

T = 500 T = 1000 T = 5000
VAR 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

GC-MLP 0.998(±0.029) 1.000(±0.000) 1.000(±0.000)

Table 5.13: Average AUPRs and standard deviations for VAR and GC-MLP models for time
series with lengths (T) 500, 1,000 and 5,000 generated from the model given by equations 5.5.

When training neural networks, we use the same hyperparameters as in the
experiment described in Section 5.4.

Tables 5.12 and 5.13 show average AUROCs and AUPRs, respectively, for
the two inference techniques applied to time series of different lengths.
The GC-MLP infers the fully correct causal graph in 97 out of 100 datasets
for 500 points long sequences and is correct in all cases for 1,000 and 5,000
points long time series. On the other hand, the VAR identifies the correct
structure in all datasets for all lengths. Despite the fact that the vector au-
toregressive model is only appropriate for continuously-valued time series,
in this simple example, the misspecification does not adversely affect the
inference of causal relationships. At the same time, the GC-MLP performs
equally well, while accounting for differences in data types.

5.6.2 Experiment 2

Let us now slightly adjust the autoregressive model defined in equations 5.5
by introducing nonlinearity into the causal relationship between variables
Xt and Yt. The adjusted multivariate time series is given by

Xt = 0.3Xt−1 + NX,t,
Wt = −0.6Wt−1 + 0.25Xt−1 − 0.5Yt−1 + 0.3NW,t,
Yt = 1{− 1

4≤
1
5 ∑5

j=1 Xt−j≤ 1
4},

(5.6)

where N·,t ∼ N (0, 1) are innovation terms. Note, that the causal summary
graph remains the same as in the previous experiment.

The comparison of VAR and GC-MLP techniques on 100 datasets sampled
from this time series model is provided in tables 5.14 and 5.15. Neural
networks perform clearly better than F-tests in terms of both AUROC and

51



5. Simulation Experiments

Method
Average AUROC(±2SD)

T = 500 T = 1000 T = 5000
VAR 0.820(±0.202) 0.831(±0.220) 0.847(±0.227)

GC-MLP 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

Table 5.14: Average AUROCs and standard deviations for VAR and GC-MLP models for time
series with lengths (T) 500, 1,000 and 5,000 generated from the model given by equations 5.6.

Method
Average AUPR(±2SD)

T = 500 T = 1000 T = 5000
VAR 0.873(±0.111) 0.882(±0.118) 0.889(±0.133)

GC-MLP 1.000(±0.000) 1.000(±0.000) 1.000(±0.000)

Table 5.15: Average AUPRs and standard deviations for VAR and GC-MLP models for time
series with lengths (T) 500, 1,000 and 5,000 generated from the model given by equations 5.6.

AUPR. In particular, GC-MLPs estimate the correct Granger causal struc-
ture in all datasets for all time series lengths, whereas the VAR retrieves
the correct graph, on average, in merely 15% of cases. This example demon-
strates that the absence of linear separability between classes of a categorical
variable can lead to biases when inferring Granger causality with the linear
model.

5.7 Reversed Time Analysis

As mentioned before, testing for time-reversed Granger causality can be
a promising ‘shortcut’ when trying to discover a set of Granger effects,
rather than causes. Nevertheless, the theoretical properties of TRGC are not
well understood, therefore, in this section we examine the empirical perfor-
mance of neural networks at estimating Granger causality on time-reversed
sequences.

We selected several time series models from the experiments described in
the previous sections and performed time-reversed causal analysis with the
GC-MLP technique. Namely, we look at time series given by equations
5.1, 5.2, 5.3, 5.4 and 5.6. For each model, we generated 100 datasets and
considered sequences 500, 1,000 and 5,000 steps long. In the Lorenz 96
system the forcing constant was set to 10. During inference we used the
same hyperparameter values as in the corresponding experiments without
time reversal.

Results, summarised in tables 5.16 and 5.17, suggest that it is possible to
infer correct causal structures by training neural networks on time-reversed
sequences. In time series models 5.2, 5.3 and 5.6, given sufficiently long
sequences, the GC-MLP manages to retrieve fully correct summary graphs
in all 100 datasets. In models 5.2, 5.3, 5.4 and 5.6 we observe improve-
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Time Series
Model

Average AUROC(±2SD)
T = 500 T = 1000 T = 5000

Linear (5.1) 0.890(±0.263) 0.932(±0.209) 0.906(±0.267)
Nonlinear (5.2) 0.650(±0.959) 0.690(±0.930) 1.000(±0.000)
Interaction (5.3) 0.710(±0.912) 0.950(±0.438) 1.000(±0.000)
Lorenz 96 (5.4) 0.948(±0.036) 0.987(±0.011) 0.989(±0.004)
Categorical (5.6) 0.901(±0.223) 0.952(±0.174) 1.000(±0.000)

Table 5.16: Average AUROCs and standard deviations for time-reversed Granger causality in-
ference with GC-MLPs for 5 different time series models. Averages were computed across 100
synthetic datasets for sequences with lengths (T) of 500, 1,000 and 5,000.

Time Series
Model

Average AUPR(±2SD)
T = 500 T = 1000 T = 5000

Linear (5.1) 0.928(±0.175) 0.955(±0.135) 0.929(±0.209)
Nonlinear (5.2) 0.825(±0.479) 0.845(±0.465) 1.000(±0.000)
Interaction (5.3) 0.855(±0.456) 0.975(±0.219) 1.000(±0.000)
Lorenz 96 (5.4) 0.814(±0.100) 0.944(±0.044) 0.946(±0.021)
Categorical (5.6) 0.939(±0.123) 0.970(±0.103) 1.000(±0.000)

Table 5.17: Average AUPRs and standard deviations for time-reversed Granger causality infer-
ence with GC-MLPs for 5 different time series models. Averages were computed across 100
synthetic datasets for sequences with lengths (T) of 500, 1,000 and 5,000.

ments in performance with the increase in the lengths of observed time
series. In contrast, for the linear autoregressive model (see Equation 5.1)
the time-reversed GC inference with neural networks estimates the correct
causal graph in only 59 and 58 datasets out of 100 for sequences 1,000 and
5,000 points long, respectively. A quite high failure rate for such a simple
autoregressive model is worrisome, however, it might be attributed to an
inappropriate choice of hyperparameters.

To summarise, from this experiment we see that the time-reversed GC in-
ference with MLPs is feasible, but appears to be more challenging and de-
manding w.r.t. training data than the GC inference without time reversal.
Nevertheless, TRGC can still be an advantageous computational ‘shortcut’
when we are interested in discovering only the set of variables driven by the
given target.
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Chapter 6

MS Data Analysis

In this chapter we provide the results of causal time series analysis of syn-
chronised mass spectrometry and sleep stage data. We consider Granger
causal relationships in two directions: from ion intensities to sleep phases
and from sleep phases to ion intensities. In addition, we perform simulation
experiments with the MS data to support our choice of hyperparameters
and verify that our inference technique behaves as expected. Last but not
least, we also assess the predictive performance of trained neural networks
using cross-validation.

6.1 Data Processing and Analysis Procedure

Causal analysis of mass spectrometric and sleep stage time series performed
in this thesis consists of several steps listed below in the chronological order:

1. Normalisation of mass spectra using internal standards (see Subsec-
tion 3.2.1).

2. Ion intensity time series smoothing using Savitzky–Golay filter (see
Subsection 3.2.2).

3. Ion intensity time series standardisation (see Subsection 3.2.2).

4. Application of the bootstrapping procedure, given in Algorithm 1, to
the pre-processed positive and negative mode data, in order to identify
ions that Granger-cause sleep phases. The bootstrapping is run sepa-
rately for three binary-valued targets derived from the original sleep
stage time series: wakefulness-vs.-all, NREM-vs.-all and REM-vs.-all.
We consider these three cases, because we are interested in discovering
causal relationships characteristic of particular stages of sleep.

5. Analysis in the previous step is repeated on time-reversed positive and
negative mode sequences, in order to identify ions that are Granger-
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Ion Mode
Number of Discoveries
Wake NREM REM

Positive 101 49 87
Negative 261 106 126

Table 6.1: Counts of ions identified as Granger causes of different sleep phases for positive and
negative modes.

caused by sleep phases (see Section 4.4 for details on time-reversed
Granger causality).

6.1.1 Hyperparameters

We train neural networks on each of B = 1000 bootstrap re-samples of the
data. Each GC-MLP has 100 hidden units in layers 1 and 2 (of every sub-
network) and 200 hidden units in layer 3. The model order is chosen to
be K = 30, i.e. we consider autoregressive relationships with lags up to
300 seconds. We set regularisation parameter λ to 0.001 and choose α =
0.8. We use the penalised weighted cross-entropy, given by Equation 4.9,
as the loss function. The weight of 0.9 is assigned to the less prevalent
class, whereas the weight of 0.1 is assigned to the more prevalent one. The
training is performed for one epoch by gradient descent using the PyTorch
[56] implementation of Adam optimiser [39] with mini-batches of 100 data
points. For the bootstrapping procedure, we use parameter values cth =
0.0025 and α = 0.05 (not to be confused with α that controls the trade-off
between L1 and L2 penalties in the loss function of GC-MLPs).

6.2 Results

In this section we summarise and discuss the results of causal time series
analysis. As mentioned before, we consider two possible directions of causal
relationships for positive and negative mode data.

6.2.1 Ions Driving Sleep Stages

We apply bootstrapping to the original data to find a set of ions that Granger-
cause sleep stage transitions. The analysis is conducted separately for three
sleep phases: wakefulness, NREM (includes stages N1, N2 and N3) and REM.

Recall that after bootstrapping we obtain 5-percentiles of weights for each
ion (denoted by qj in Algorithm 1). The discovery is claimed if the per-
centile exceeds specified threshold cth. Numbers of discoveries made by
the technique for every sleep stage for both ion modes are shown in Table
6.1. Wakefulness has the largest count of causal ions, in total, 362; it is fol-
lowed by REM phase with 213 discoveries and NREM stages that are driven
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6.2. Results

(a) (b)

Figure 6.1: Histograms of all bootstrapped absolute variable weights (on the left) and 5-
percentiles of bootstrapped weights (on the right) obtained from positive mode data with REM re-
sponse time series. The red vertical line in the histogram to the right corresponds to cth = 0.0025.

by 155 variables. Lists with mass-to-charge ratios of positive and negative
causal ions are given in Appendix D.1. Let us examine distributions of ab-
solute values of bootstrapped variable weights and resulting 5-percentiles
for REM time series. From histograms plotted in Figures 6.1(a) and 6.1(b)
we observe that a large number of bootstrapped variable weights are not
shrunk to zero and that weight 5-percentiles of many ions exceed threshold
cth = 0.0025. Similar weight distributions can be observed for other phases.
These distributions clearly suggest that our inference technique identifies
some significant associations between the target and considered predictors.

It is interesting that in the positive mode, for all three phases of sleep, we
identify the ion with the mass-to-charge ratio of 69.06988 as causal. More-
over, 5-percentiles of bootstrapped weights for this variable are among top
five largest percentiles for all phases of sleep. This m/z primarily corre-
sponds to isoprene [1], a volatile organic compound the abundance of which
in human breath is hypothesised to be associated with leg movements [38].
Peaks in its intensity that can be clearly seen in Figure 3.2 often coincide
with leg muscle contractions. Its correlation with sleep stage signals was
discussed in the literature before [1, 38].

Some noteworthy patterns which are visible in univariate time series plots
of positive and negative mode ions that were identified as causal are shown
in Figures 6.2 and 6.3. In fact, all of the ions provided in the plots were
discovered to drive all three sleep phases. Observe that in these sequences
sleep stages quite consistently coincide with fluctuations of ion intensities.
In particular, sharp peaks of ion abundances often occur during phases of
wakefulness and REM sleep. Similar patterns can be spotted in many other
metabolites discovered in the causal analysis, whereas in some cases the
association is not as straightforward.

Since prediction tasks of different sleep phases based on mass spectromet-
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6. MS Data Analysis

(a) 69.070 m/z

(b) 99.765 m/z

(c) 118.065 m/z

Figure 6.2: Pre-processed relative intensity time series for three positive ions superimposed with
synchronised sleep stage labels. The ions were discovered to Granger-cause all stages. Sleep
phases are shown in different colours: orange corresponds to wakefulness, blue to NREM, and
green to REM. Note, that the time series originate from different subjects.
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(a) 85.029 m/z

(b) 113.024 m/z

(c) 149.045 m/z

Figure 6.3: Pre-processed relative intensity time series for three negative ions superimposed with
synchronised sleep stage labels. The ions were discovered to Granger-cause all stages.
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6. MS Data Analysis

(a) Positive mode

(b) Negative mode

Figure 6.4: Visualisations of intersections between sets of ions that Granger-cause wakefulness,
NREM and REM sleep phase time series for positive and negative modes. Every bar corresponds
to an intersection that is annotated below. Note, that the corresponding intersections are also
shown in Venn diagrams at the bottom. These plots were produced using UpSetR library [12] in
R programming language.

ric features should be related, we expect sets of ions identified as Granger-
causing different stages of sleep to overlap. Figure 6.4 contains bar plots
with sizes of all intersections for both ion modes. Inferred sets of causal
ions overlap substantially, all two-way and three-way intersections are not
empty in both modes. Observe that NREM sleep phase has the least num-
ber of variables discovered to uniquely cause it (only 12 in the positive mode
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Intersection
p-value

Positive Negative
Wake ∩ NREM < 0.01 < 0.0001
NREM ∩ REM < 0.01 < 0.0001
Wake ∩ REM < 0.0001 < 0.0001

Wake ∩ NREM ∩ REM < 0.0001 < 0.0001

Table 6.2: p-values of tests of independence between sets of ions identified to Granger-cause
different stages of sleep. p-values were adjusted with the Bonferroni method.

Ion Mode
Number of Discoveries
Wake NREM REM

Positive 119 70 84
Negative 267 113 112

Table 6.3: Counts of ions identified as being Granger-caused by different sleep phases for positive
and negative modes.

and 4 in negative). Thus, NREM shares most of its causes with the other two
phases. Given that stages of NREM can be seen as a gradual transition from
wakefulness to deep sleep, it makes sense that many drivers of NREM are
the same as of the two other phases.

To see if sizes of intersections differ significantly from sizes that can be ob-
tained by choosing sets of ions independently for each phase, we perform
statistical tests. In particular, for two-way intersections, we use the Chi-
Square test of independence and, for three-way intersections, we estimate
p-values using numerical simulations. Table 6.2 contains adjusted p-values
for all intersections of sets of causal ions discovered in both modes. All over-
laps between the three sets are statistically significant at level α = 0.05. Thus,
we can conclude that the three prediction tasks, probably, have a substantial
amount of common ‘useful’ covariates.

6.2.2 Ions Driven by Sleep Stages

To infer Granger causality from sleep phases to ion intensities, we perform
bootstrapping and train neural networks on time-reversed sequences. In
contrast to the previous subsection, time reversal allows discovering Granger
effects of the target time series, rather than its causes.

Table 6.3 contains counts of variables that were identified as being driven by
sleep phases for both modes of mass spectrometry. Observe that wakeful-
ness Granger-causes the largest number of ion intensity time series in both
modes; in total, it drives 386 ions. NREM and REM were discovered to in-
fluence 183 and 196 variables, respectively. Appendix D.2 contains lists of
mass-to-charge ratios of ions discovered in the time-reversed analysis from
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6. MS Data Analysis

(a) Positive mode

(b) Negative mode

Figure 6.5: Visualisations of intersections between sets of ions Granger-caused by wakefulness,
NREM and REM sleep phase time series for positive and negative modes.

positive and negative mode data.

Similarly to the previous subsection, we look at the intersections of sets
of ions identified to be driven by the response. Figure 6.5 depicts sizes of
intersections for both modes of mass spectrometry. There are many ions that
are shared between the sets. Even the three-way intersections are non-empty.
Observe that the overlap between sets for wakefulness and NREM is larger,
for both ion modes, than the intersection between wakefulness and REM.
This difference make sense, because NREM stages can be seen as a gradual
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Intersection
p-value

Positive Negative
Wake ∩ NREM < 0.0001 < 0.0001
NREM ∩ REM < 0.01 < 0.0001
Wake ∩ REM < 0.0001 < 0.001

Wake ∩ NREM ∩ REM < 0.0001 < 0.0001

Table 6.4: p-values of tests of independence between sets of ions identified to be Granger-caused
by different stages of sleep. p-values were adjusted with the Bonferroni method.

Sleep Phase
Number of

Causes
Number of

Effects
Number of Common

Causes & Effects
Wakefulness 101 119 80

NREM 49 70 28
REM 87 84 58

Table 6.5: Numbers of ions identified simultaneously as Granger causes and effects in the positive
mode.

Sleep Phase
Number of

Causes
Number of

Effects
Number of Common

Causes & Effects
Wakefulness 261 267 195

NREM 106 113 75
REM 126 112 86

Table 6.6: Numbers of ions identified simultaneously as Granger causes and effects in the
negative mode.

transition from wakefulness to deep sleep and, thus, there should be more
in common between wakefulness and NREM than wakefulness and REM.

In the same way as before, we test if sizes of set intersections are statistically
significant. Adjusted p-values (by the Bonferroni correction) are shown in
Table 6.4 for positive and negative modes. As can be seen, all intersections
are declared significant at level α = 0.05. This suggests that the sets of ions
Granger-caused by sleep phases were, likely, not chosen independently.

6.2.3 Feedback

Herein we investigate if the inferred causal relationships between ion in-
tensity and sleep stage time series feature any feedback, i.e. we look for
ions that simultaneously drive and are driven by phases of sleep. Tables 6.5
and 6.6 contain numbers of common Granger causes and effects of different
phases of sleep identified from positive and negative mode data, respectively.

Observe that in both modes most of discovered ions drive and are driven
by sleep stages. If causal feedback connections are not spurious, these re-
sults suggest that metabolism and sleep regulate each other. There exist
other possible reasons for causal loops, namely: unobserved confounders
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6. MS Data Analysis

Sleep Phase
Average Balanced Accuracy(±2SD)

Positive Negative
Wake 0.771(±0.146) 0.763(±0.266)

NREM 0.597(±0.155) 0.621(±0.089)
REM 0.676(±0.289) 0.747(±0.174)

Table 6.7: Average balanced accuracy scores and standard deviations for leave-one-subject-out
cross-validation of GC-MLPs for different phases of sleep obtained from positive and negative
modes.

that influence both ion intensity and sleep stage time series; instant causal-
ity; and not sufficiently frequent sampling that prevents the detection of the
direction [49].

6.3 Model Validation

A valid question to investigate is whether it is possible to predict future sleep
stages solely based on past mass spectrometric profiles. Causal discoveries
discussed before would be questionable, if trained neural networks possess
no predictive power. Therefore, in this section we validate tour model on
reversed-time sequences (similar results were obtained on sequences with-
out time reversal, but we omit them). The only adjustment that we make
compared to the setting in the previous sections is that we do not include
sleep stage time series as a predictor. We use leave-one-subject-out cross-
validation (CV) to see how well GC-MLPs generalise across different sub-
jects. Namely, for each iteration, we leave out one subject and train a neural
network on the rest. To evaluate the performance, we employ the balanced
accuracy score as implemented in scikit-learn library [58]. This score is more
appropriate than the normal accuracy because of imbalances in frequencies
of classes.

Average balanced accuracy CV scores are shown in Table 6.7. In all datasets
the mean scores are significantly greater-than 0.5 at level α = 0.05. Thus,
on average, in all prediction tasks GC-MLPs perform better than the refer-
ence level. In addition, we examine normal accuracy CV scores, which are
provided in Appendix D.3 in Table D.1. As can be seen, the mean scores dif-
fer significantly from 0.5 only for wakefulness and REM stages, and not for
NREM. Based on both performance metrics, we see that NREM time series
appear to be the most difficult to predict from mass spectrometric features.
This could be because of the similarity of NREM to the other two stages.

To sum up, the results of cross-validation show that there might be some
structure in the data driven by differences between phases of sleep. Nev-
ertheless, the predictive performance of GC-MLPs on these datasets is by
far not perfect, especially, for NREM stages, for which the mean accuracy
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Sleep Phase
Average Balanced Accuracy(±2SD)

Linear Nonlinear
Wake 0.725(±0.163) 0.771(±0.146)

NREM 0.586(±0.132) 0.597(±0.155)
REM 0.652(±0.362) 0.676(±0.289)

Table 6.8: Average balanced accuracy scores and standard deviations for leave-one-subject-out
cross-validation of GC-MLPs with linear and nonlinear activation functions for different phases
of sleep. The scores were obtained from the positive mode of mass spectrometry.

Sleep Phase
Average Balanced Accuracy(±2SD)

Linear Nonlinear
Wake 0.695(±0.278) 0.763(±0.266)

NREM 0.634(±0.084) 0.621(±0.089)
REM 0.691(±0.207) 0.747(±0.174)

Table 6.9: Average balanced accuracy scores and standard deviations for leave-one-subject-out
cross-validation of GC-MLPs with linear and nonlinear activation functions for different phases
of sleep. The scores were obtained from the negative mode of mass spectrometry.

does not differ significantly from the performance level of the random clas-
sifier. Therefore,the inference results obtained for this sleep phase should be
interpreted with caution.

6.3.1 Nonlinearity

It is interesting to investigate if there is any evidence for nonlinearity in the
relationship between ion intensities and stages of sleep. To address this issue,
we perform leave-one-subject-out cross-validation for a GC-MLP model with
all linear activation functions. We then compare the performance of linear
GC-MLPs to the original model with ReLU. Tables 6.8 and 6.9 show average
balanced accuracy scores obtained from CV based on positive and negative
mode data, respectively. In most cases, the nonlinear version, on average,
has a superior balanced accuracy score. However, in neither of datasets the
difference in scores is statistically significant. While the GC-MLP with non-
linear activation functions has cross-validations results that are non-inferior
to the linear approach, there is no significant evidence for a nonlinearity in
the association between sleep stage signals and mass spectrometric profiles.

6.4 Simulation Experiments with MS Data

We perform several simulation experiments, in order to verify that our causal
neural network inference technique alongside with bootstrapping behave
as expected on the mass spectrometry data in various controlled settings.
Namely, we explore the number of false discoveries made in two different
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6. MS Data Analysis

(a) 69.07 m/z (b) 118.07 m/z (c) 152.13 m/z

(d) 229.25 m/z (e) 271.30 m/z

Figure 6.6: Histograms of absolute values of bootstrapped weights for five fixed ions obtained
from a simulated dataset with permuted ion intensity time series.

scenarios and investigate the relationship between the number of false dis-
coveries and regularisation parameter λ.

6.4.1 Permuted Ion Intensities

The first experiment we perform is permutation of ion intensity time series.
We consider five ions that were originally discovered as Granger-causing the
REM sleep stage time series, in particular, we chose ions with mass-to charge
ratios 69.06988, 118.06503087, 152.12762686, 229.25221961 and 271.29923335.
We generate 10 synthetic datasets wherein we randomly permute all inten-
sity time series except for the sequences of these five ions. Subsequently,
we apply the bootstrapping procedure to these datasets with B = 100 re-
samples. We use the configuration of hyperparameters described in Subsec-
tion 6.1.1. We expect that none of the variables the time series of which were
permuted are identified as causal, whereas the five ions that remain fixed
should be.

Figure 6.6 contains histograms of absolute values of bootstrapped weights
for the five ions, obtained from one of the simulated datasets. Observe
that every of these ions is discovered as causal, because all 5-percentiles
are clearly greater-than cth = 0.0025. In other nine simulations we observe
similar results, i.e. all of the variables that were not permuted are claimed to
Granger-cause the REM sleep stage. Moreover, none of the permuted time
series in all 10 simulations were discovered to drive the response.

The results of this experiment completely agree with our initial expectations.
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(a) (b)

Figure 6.7: Histograms of all bootstrapped absolute variable weights (on the left) and 5-
percentiles of bootstrapped weights (on the right) obtained from one dataset with permuted
sleep stage labels.

We see that weights of all irrelevant variables are consistently shrunk to-
wards zero, and weights of time series that, possibly, drive the response are
not.

6.4.2 Permuted Sleep Stage Labels

Another experiment we perform is with randomly permuting REM sleep
stage labels while keeping ion intensity time series untouched. In this set-
ting, we expect our inference technique to identify no variables that are
causally related with the permuted target. We run the bootstrapping proce-
dure on 10 different simulated datasets with B = 100 re-samples. We use
the same hyperparameter values as described in Subsection 6.1.1 and do not
perform time reversal.

Figure 6.7(a) depicts the histogram of absolute values of all bootstrapped
variable weights obtained from one simulated dataset, and Figure 6.7(b)
shows the distribution of 5-percentiles computed for each variable. As ex-
pected, most weights are shrunk towards zero. Observe that in this case
none of 5-percentiles exceed threshold cth = 0.0025. Similar weight distri-
butions were obtained for other nine simulated datasets. In two cases we
discovered a causal relationship from permuted sleep stage time series to
itself, however, in all datasets no relationships were found from ions to the
target. These results are satisfactory, since almost no spurious causal links
were inferred.

6.4.3 Synthetic Sleep Stage Labels

The setting considered in the previous experiment might be too optimistic,
since permuted sleep stage time series are too unstructured and are very
unlikely to be correlated with ion intensities. Therefore, herein we generate
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λ
Numbers of

False Discoveries
Average Number of

False Discoveries
0.0000 7, 27, 32, 118, 38, 26, 28, 34, 9, 48 36.7
0.0001 43, 21, 73, 29, 70, 14, 12, 60, 17, 14 35.3
0.0010 13, 1, 7, 18, 32, 5, 23, 33, 8, 4 14.4
0.0100 1, 0, 0, 0, 1, 0, 1, 0, 0, 0 0.3

Table 6.10: Numbers of ions falsely identified as Granger-causing the synthetic target time series
for different values of the regularisation parameter. Note, that causal inference was performed
on 10 datasets.

synthetic target time series which behave like REM sequences. Similarly to
the setting above, we expect no causal links to be inferred. We perform
bootstrapping on 10 simulated datasets with B = 100 re-samples and under
the same hyperparameter values as in Subsection 6.1.1. Additionally, we run
inference with a range of regularisation parameter values, namely, we look
at λ = 0.0, 0.0001, 0.001, 0.01.

Table 6.10 contains numbers of false discoveries made by the inference tech-
nique under different values of λ. Observe that for the largest value of λ
almost no false discoveries are made. A decrease in the value of the regular-
isation parameter seems to lead to more spurious causal relationships being
inferred. For λ = 0.001, the value we use in the causal analysis of MS and
sleep stage time series, on average, 14.4 false discoveries are made. Despite
the fact that this result is not ideal, larger values of the regularisation param-
eter could be, in practice, too conservative and, thus, may lead to inferring
a causal graph that is much sparser than the true structure.

Overall, this experiment demonstrates how the choice of parameter λ can
mitigate spurious inference in a high-dimensional setting. Nevertheless, it
needs to be chosen cautiously to avoid a complete loss of power. While
the obtained numbers of false discoveries might not transfer to inference
results on the ‘real world’ data, they suggest that some discovered causal
relationships could originate from spurious correlations arising due to high
dimensionality of the dataset.
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Chapter 7

Discussion & Conclusions

In this thesis we presented a framework for causal time series analysis and
used it to investigate the relationship between metabolites in human ex-
halome and sleep stage transitions. This chapter provides a brief discussion
of the results of the thesis, summarises our conclusions and lists possible
directions for further research.

The dataset with synchronised mass spectrometry and sleep stage labels
was acquired at a very high time resolution that has never been considered
in the breathomics literature before in a study of such scale. Moreover, there
has been little to no systematic discussion of the association between human
sleep and volatile organic compounds contained in exhaled breath [1, 38].
Thus, from the point of view of biology and biochemistry, this project is
exciting and innovative at least due to its sheer scale and novelty of its
research questions.

Granger causality approach that we adopted herein has seen few applica-
tions in the analysis of time course MS data [16, 76]. Building on componen-
twise MLPs and LSTMs, proposed in [73] for nonlinear GC estimation, we
introduced our own neural network architecture. In order to account for bio-
logical variability between time series replicates and to quantify uncertainty
about the inferred causal structure, we leveraged the bootstrap method. In
addition, we investigated the use of time-reversed Granger causality for dis-
covering the set of effects of the target sequence. Our method has several
advantages over conventional approaches, such as correlation analysis and
analysis of variance (ANOVA):

• It can represent non-additive nonlinear dependencies between sleep
stage labels and multiple mass spectrometric features;

• It deals with time series in a principled way and can account for time-
delayed regressive relationships;
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• GC is a directed cause-effect relationship, whereas (cross-)correlation
does not focus on precedence in time;

• It does not merely examine marginal relationships, it performs multi-
ple regression.

There are also some substantial disadvantages. The power of this method
comes with a range of hyperparameters that need to be tuned and computa-
tional costs of training neural networks and bootstrapping. To demonstrate
that the introduced inference technique behaves as expected, we tested it on
a number of synthetic datasets and also conducted simulation experiments
based on the mass spectrometric and sleep stage data. The results were
promising and, in general, agreed with our initial expectations.

Using the technique for inferring Granger causality based on neural net-
works and bootstrapping, we identified quite large sets of positive and neg-
ative ions that drive and are driven by wakefulness, NREM and REM stages.
Among causal metabolites, we found isoprene, a VOC that was studied be-
fore in association with sleep [1, 38]. We observed a substantial overlap
between causes and effects of the phases. This could suggest that human
sleep and metabolism mutually regulate each other. There could be also
other possible explanations for the feedback, such as, confounding, under-
sampling or presence of instantaneous causality [49]. Sets of ions discovered
in this analysis provide a good starting point for a more detailed further in-
vestigation of the relationship between metabolism and sleep.

Our findings are corroborated by the results of the cross-validation of neural
networks fitted for causal analysis of time series. It appears that it is possi-
ble to predict future sleep stage labels based solely on past ion intensities.
Nevertheless, the performance of trained neural networks is by far not per-
fect, especially, for NREM stages. Therefore, inference results for this phase
of sleep should be interpreted with caution.

7.1 Limitations

From the methodological perspective, key limitations of this work are as-
sociated with assumptions embedded in the definition of Granger causal-
ity. In particular, GC analysis can yield spurious conclusions if the set of
considered variables is not causally sufficient. Thus, if there exist superior
mechanisms that regulate both metabolism and sleep, statements of causal-
ity between ion intensities and sleep phases could be meaningless.

An important design limitation of this study is a very moderate number of
subjects that the time series were acquired from. Having a larger sample
would allow generalising better across the population and would improve
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the quality of bootstrapping results. It would also provide us with a less
biased test error estimate from the cross-validation.

7.2 Further Research

This thesis opens many promising directions for further research with the fo-
cus on methodological and biomedical aspects of the project. The following
list contains a few topics worthy of further investigation:

• The sizes of layers and depths of sub-networks in the GC-MLP architec-
ture could have influence on the quality of causal inference. It would
be interesting to investigate how altering these characteristics can af-
fect the performance of the technique.

• The neural network architecture considered in this thesis does need to
be restricted to MLP or LSTM sub-networks. We could examine the
use of other modules, for example, dilated or causal convolutions [7].

• As we saw before, the choice of regularisation parameter λ is crucial
in controlling the number of false discoveries. Stability selection pro-
cedure, proposed in [50], could provide a principled way for selecting
the value of λ for GC-MLPs motivated by rigorous error control.

• It could desirable to understand at what time delay causal interactions
between sleep stage transitions and metabolism occur. For this pur-
pose, we could perform causal time series analysis under different
model orders (K) and study how causal links vary for different hori-
zons.

71





Appendix A

Visualisations

(a) (b)

(c)

Figure A.1: First two principal components of the PCA of log-transformed positive mode MS
time series. Figure A.1(a) is based on the raw data, A.1(b) shows principal components after
normalisation and smoothing, and Figure A.1(c) was produced after all pre-processing steps.
Data points acquired from ten different subjects are plotted in different colours.
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A. Visualisations

(a) (b)

(c)

Figure A.2: Two-dimensional t-SNE representations of the negative mode MS time series. Figure
A.2(a) was produced from the raw data, A.2(b) shows data after normalisation and smoothing,
finally, A.2(c) depicts points after all pre-processing steps, including standardisation. Different
colours correspond to ten subjects.
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(a) (b)

(c)

Figure A.3: First two principal components of the PCA of log-transformed negative mode MS
time series. A.3(a), A.3(b) and A.3(c) are based on raw, normalised and smoothed and fully
pre-processed data, respectively. Data points acquired from ten different subjects are plotted in
different colours.
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A. Visualisations

(a) Subject 2

(b) Subject 6

(c) Subject 10

Figure A.4: Two-dimensional t-SNE representations of the MS time series in the negative ion
mode for three subjects. In plots on the left side, points are coloured according to their sleep
stage labels: orange, blue and green colours correspond to wakefulness, NREM and REM phases,
respectively. Plots on the right side contain the same t-SNE representations, however, points
that are consecutive w.r.t. time are connected by line segments.
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(a) Subject 2

(b) Subject 6

(c) Subject 10

Figure A.5: First two principal components of the log-transformed MS time series in the positive
ion mode for three subjects. In plots on the left side, points are coloured according to their sleep
stage labels: orange, blue and green colours correspond to wakefulness, NREM and REM phases,
respectively. Plots on the right side contain the same PCA representations, however, points that
are consecutive w.r.t. time are connected by line segments.
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A. Visualisations

(a) Subject 2

(b) Subject 6

(c) Subject 10

Figure A.6: First two principal components of the log-transformed MS time series in the negative
ion mode for three subjects. In plots on the left side, points are coloured according to their sleep
stage labels: orange, blue and green colours correspond to wakefulness, NREM and REM phases,
respectively. Plots on the right side contain the same PCA representations, however, points that
are consecutive w.r.t. time are connected by line segments.
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Appendix B

Model

1 import torch . nn as nn
2 import numpy as np
3 import torch
4 import torch . nn . f u n c t i o n a l as F
5 from torch . autograd import Var iab le
6
7
8 c l a s s MLPgc( nn . Module ) :
9

10 def i n i t ( s e l f , num vars , device , lag , h idden size 1 , h idden size 2 ,
11 num outputs =1 , dp = 0 . 0 ) :
12 ”””
13 I n i t i a l i s e s an MLPgc module , which r e p r e s e n t s a neural
14 network model f o r Granger c a u s a l i t y es t imat ion .
15
16 : param num vars : number of v a r i a b l e s , inc luding the response .
17 : param device : device to be used f o r c a l c u l a t i o n s , CPU or GPU.
18 : param lag : order of considered r e g r e s s i v e r e l a t i o n s h i p s ,
19 s p e c i f i e s the horizon in the past of p r e d i c t o r s to be
20 used to f o r e c a s t the future of the response .
21 : param hidden s ize 1 : s i z e of l a y e r s 1 and 2 in sub−networks .
22 : param hidden s ize 2 : s i z e of l a y e r 3 .
23 : param num outputs : number of output u n i t s .
24 : param dp : dropout r a t e applied to a l l layers , to prevent
25 the co−adaptat ion of neurons . Defaul t value 0 . 0 , i . e . no dropout .
26 ”””
27 super (MLPgc , s e l f ) . i n i t ( )
28
29 # Sub−networks
30 s e l f . l a y e r 1 l i s t = nn . ModuleList ( )
31 s e l f . l a y e r 2 l i s t = nn . ModuleList ( )
32 f o r s t a t e in range ( num vars ) :
33 l ay er 1 = nn . Linear ( lag , h idden s ize 1 )
34 l ay er 2 = nn . Linear ( hidden size 1 , h idden s ize 1 )
35 s e l f . l a y e r 1 l i s t . append ( la ye r 1 )
36 s e l f . l a y e r 2 l i s t . append ( la ye r 2 )
37
38 # I n i t i a l i s e weights f o r each v a r i a b l e
39 s e l f . imp weights = nn . Parameter ( torch . Tensor ( np . ones ( ( num vars , ) ) /
40 num vars + np . random . normal ( 0 , 0 . 0 0 0 0 1 ,
41 ( num vars , ) ) ) . f l o a t ( ) . to ( device ) )
42
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43 # F i n a l l a y e r s
44 s e l f . l a y e r 3 = nn . Linear ( h idden s ize 1 ∗ num vars , h idden s ize 2 )
45 s e l f . l a y e r 4 = nn . Linear ( hidden size 2 , num outputs )
46
47 # I n i t i a l i s e the r e s t of the weights
48 s e l f . i n i t w e i g h t s ( )
49
50 # Save parameters
51 s e l f . num vars = num vars
52 s e l f . lag = lag
53 s e l f . h idden s ize 1 = hidden s ize 1
54 s e l f . h idden s ize 2 = hidden s ize 2
55 s e l f . dp = dp
56
57 # I n i t i a l i s a t i o n
58 def i n i t w e i g h t s ( s e l f ) :
59 f o r m in s e l f . modules ( ) :
60 i f i s i n s t a n c e (m, nn . Linear ) :
61 nn . i n i t . xavier normal (m. weight . data )
62 m. b i a s . data . f i l l ( 0 . 1 )
63 e l i f i s i n s t a n c e (m, nn . BatchNorm1d ) :
64 m. weight . data . f i l l ( 1 )
65 m. b i a s . data . zero ( )
66
67 # Forward propagation
68 def forward ( s e l f , inputs ) :
69 # Dimensions of inputs need to be [ batch s ize , lag ∗ num vars ]
70 aggregated = None
71
72 # Propagate in sub−networks
73 f o r i in range ( s e l f . num vars ) :
74 l a y e r 1 = s e l f . l a y e r 1 l i s t [ i ]
75 l a y e r 2 = s e l f . l a y e r 2 l i s t [ i ]
76 inp = inputs [ : , ( s e l f . lag ∗ i ) : ( s e l f . lag ∗ ( i + 1 ) ) ]
77 tmp = F . dropout ( F . r e l u ( l a y e r 2 ( F . dropout ( F . r e l u ( l a y e r 1 ( inp ) ) ,
78 p= s e l f . dp , t r a i n i n g =True ) ) ) , p= s e l f . dp , t r a i n i n g =True )
79 i f i == 0 :
80 aggregated = s e l f . imp weights [ i ] ∗ tmp
81 e l s e :
82 aggregated = torch . c a t ( ( aggregated , s e l f . imp weights [ i ] ∗
83 tmp ) , dim=1)
84
85 # F i n a l two l a y e r s
86 pred = s e l f . l a y e r 4 ( F . dropout ( F . r e l u ( s e l f . l a y e r 3 ( aggregated ) ) ,
87 p= s e l f . dp , t r a i n i n g =True ) )
88
89 re turn pred

Listing B.1: Python implementation of the GC-MLP model for Granger causality estimation.
The implementation is based on PyTorch machine learning library [56].
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1 import torch . nn as nn
2 import numpy as np
3 import torch
4 import torch . nn . f u n c t i o n a l as F
5 from torch . autograd import Var iab le
6
7
8 c l a s s LSTMgc( nn . Module ) :
9 def i n i t ( s e l f , num vars , device , lag max , hidden s ize ls tm ,

hidden size mlp , num outputs =1) :
10 ”””
11 I n i t i a l i s e s an LSTMgc module , which r e p r e s e n t s a neural network
12 model f o r Granger c a u s a l i t y es t imat ion .
13
14 : param num vars : number of v a r i a b l e s , inc luding the response .
15 : param device : device to be used f o r c a l c u l a t i o n s , CPU or GPU.
16 : param lag max : input s i z e f o r nn . LSTMCell module .
17 : param hidden s ize l s tm : s i z e of hidden s t a t e s in LSTMs .
18 : param hidden size mlp : s i z e of hidden l a y e r in MLP.
19 : param num outputs : number of output u n i t s .
20 ”””
21 super (LSTMgc , s e l f ) . i n i t ( )
22
23 # LSTMs
24 s e l f . l s t m c e l l l i s t = nn . ModuleList ( )
25 f o r s t a t e in range ( num vars ) :
26 s e l f . l s t m c e l l l i s t . append ( nn . LSTMCell ( lag max ,
27 hidden s ize l s tm ) )
28
29 # MLP f o r p r e d i c t i o n
30 s e l f . pred mlp l1 = nn . Linear ( h idden s ize l s tm ∗ num vars ,
31 hidden size mlp )
32 s e l f . pred mlp l2 = nn . Linear ( hidden size mlp , num outputs )
33
34 # I n i t i a l i s e weights f o r each v a r i a b l e
35 s e l f . imp weights = nn . Parameter ( torch . Tensor ( np . ones ( ( num vars , ) ) /
36 num vars + np . random . normal ( 0 , 0 . 0 0 0 0 1 , ( num vars , ) ) ) )
37
38 # I n i t i a l i s e weights
39 s e l f . i n i t w e i g h t s ( )
40
41 # Save parameters
42 s e l f . num vars = num vars
43 s e l f . lag = lag max
44 s e l f . h idden s ize l s tm = hidden s ize l s tm
45 s e l f . hidden size mlp = hidden size mlp
46
47 # I n i t i a l i s e LSTM s t a t e s
48 s e l f . l s t m s t a t e l i s t = [ ]
49 f o r s t a t e in range ( num vars ) :
50 s e l f . l s t m s t a t e l i s t . append ( ( Var iab le ( torch . zeros ( 1 ,
51 s e l f . h idden s ize l s tm ) . f l o a t ( ) ) . to ( device ) ,
52 Variab le ( torch . zeros ( 1 ,
53 s e l f . h idden s ize l s tm ) . f l o a t ( ) ) . to ( device ) ) )
54
55 def i n i t w e i g h t s ( s e l f ) :
56 f o r m in s e l f . modules ( ) :
57 i f i s i n s t a n c e (m, nn . Linear ) :
58 nn . i n i t . xavier normal (m. weight . data )
59 m. b i a s . data . f i l l ( 0 . 1 )
60 e l i f i s i n s t a n c e (m, nn . BatchNorm1d ) :
61 m. weight . data . f i l l ( 1 ) ; m. b i a s . data . zero ( )
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62
63 def forward ( s e l f , inputs ) :
64 # Input shape : [ batch s ize , number of v a r i a b l e s , sequence length ,
65 # v a r i a b l e dimension ]
66
67 # Concatenate LSTM hidden s t a t e v e c t o r s i n t o one l a r g e vector ,
68 # which w i l l be then used f o r p r e d i c t i o n
69 aggregated = [ ]
70 cnt = 0
71 f o r s t a t e , ( l s t m c e l l , l s t m s t a t e ) in enumerate ( zip (
72 s e l f . l s t m c e l l l i s t , s e l f . l s t m s t a t e l i s t ) ) :
73 l s t m s t a t e = l s t m c e l l (
74 inputs [ : , s t a t e , : , : ] . view ( inputs . shape [ 0 ] , −1) ,
75 l s t m s t a t e )
76 aggregated . append ( l s t m s t a t e [ 1 ] ∗ s e l f . imp weights [ cnt ] )
77 cnt += 1
78 aggregated = torch . c a t ( aggregated , dim=1)
79
80 # Ca l c u l a te p r e d i c t i o n s
81 pred = F . r e l u ( s e l f . pred mlp l1 ( aggregated ) )
82 pred = s e l f . pred mlp l2 ( pred )
83
84 re turn pred

Listing B.2: Python implementation of the GC-LSTM model for Granger causality estimation.
The implementation is based on PyTorch machine learning library [56].
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Appendix C

Simulation Results

(a) Simulation 1 (b) Simulation 2 (c) Simulation 3

(d) Simulation 5 (e) Simulation 6 (f) Simulation 7

Figure C.1: Parallel coordinates plots of AUROC measures for the three methods applied to six
different simulations [30]. The bold black line corresponds to the median.
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Appendix D

Inference Results

D.1 Granger Causes

D.1.1 Positive Mode

The following lists contain mass-to-charge ratios of positive mode ions that
were identified to Granger-cause different phases of sleep.

Wakefulness:

51.042273890874, 69.06988, 71.0491586058439, 73.0496017576813,
80.04948, 81.000451019127, 83.049295208478, 91.0562446158381,
92.057831342461, 99.0106501617184, 99.765153114363, 100.051208017493,
107.033774588533, 109.066966646674, 110.070452019458, 111.064836924014,
113.02638526304, 115.07534318436, 115.111683663421, 118.065030872907,
119.070142824166, 120.109894849693, 121.085905849639, 122.059996572494,
122.083076823652, 124.096458264414, 125.080828445829, 126.714564987143,
134.059756333431, 134.081076536013, 135.065505847178, 136.096555496559,
137.132555066338, 138.135894194824, 139.148013244918, 144.138294898655,
146.117649715453, 149.04458941481, 150.055075530994, 152.091436674958,
152.127626858015, 160.097102449594, 160.133312491838, 161.153673377034,
164.091922490765, 166.143758659002, 167.127755829265, 170.072603305602,
172.133360736814, 174.112685543623, 174.149065234836, 178.107204990319,
180.159248953508, 186.148775679665, 188.128030119628, 188.164299449449,
194.138421619266, 195.122331073215, 207.174200634127, 208.177689288382,
212.200766246293, 213.203776351641, 216.196599466429, 218.138524862507,
218.174364242184, 223.169263788512, 235.205328167707, 236.073658417814,
236.208786913016, 245.137972460505, 248.257940371348, 252.232518795873,
260.197508749868, 260.258938002409, 262.27396290581, 271.299233346565,
277.08910105104, 278.171019911663, 281.320174394414, 289.273973747315,
303.020342640102, 328.010893017507, 328.081080397556, 330.007958332551,
332.118769144975, 357.04792008628, 358.048375144379, 359.027081201626,
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360.027496761511, 361.024972690575, 372.318168958412, 388.126379584427,
393.288721654869, 399.345066579663, 422.264730648397, 430.887197376519,
432.067592372852, 432.884373607377, 433.064686182754, 462.148298871756,
463.147599445635

NREM:

60.0437209383538, 65.0231132388371, 69.06988, 73.0496017576813,
79.0391621821154, 84.0567768618971, 89.0409515280725, 93.0546681401631,
94.0406148759303, 99.0804113603317, 99.765153114363, 100.06126818984,
105.05451238676, 107.033774588533, 113.02638526304, 115.07534318436,
116.078346209518, 118.065030872907, 119.070142824166, 120.109894849693,
124.096458264414, 133.122217391582, 134.059756333431, 134.081076536013,
135.065505847178, 139.148013244918, 144.138294898655, 144.146044958792,
146.117649715453, 150.055075530994, 152.127626858015, 160.133312491838,
161.153673377034, 164.11533246238, 166.049988894489, 166.143758659002,
170.072603305602, 176.606831820195, 180.159248953508, 194.138421619266,
194.56051283579, 212.200766246293, 213.203776351641, 215.127609323884,
236.073658417814, 289.273973747315, 388.126379584427, 462.148298871756,
463.132738683395

REM:

58.8684561381039, 59.0491, 60.0437209383538, 60.0517223565092,
65.0231132388371, 69.06988, 71.0491586058439, 78.0314191853689,
79.0391621821154, 79.0755636353184, 81.000451019127, 84.0567768618971,
89.0233212424452, 89.0409515280725, 99.0106501617184, 99.765153114363,
100.051208017493, 100.075788438583, 101.078905585793, 107.033774588533,
109.049306373307, 109.066966646674, 111.064836924014, 116.11468667392,
118.065030872907, 118.086241128592, 119.08554300472, 119.106713252802,
120.109894849693, 122.031806265552, 126.714564987143, 135.044035645059,
136.096555496559, 137.132555066338, 138.135894194824, 144.146044958792,
152.127626858015, 159.138101066512, 160.141162500899, 172.133360736814,
173.153663296183, 174.156785169171, 186.148775679665, 189.184800338201,
197.22638639714, 215.127609323884, 215.200417954294, 219.047289332663,
219.174277195235, 220.05056265899, 220.178510567241, 221.043296629624,
229.252219609162, 235.04204001725, 235.205328167707, 236.175357284987,
236.208786913016, 238.060996593023, 241.073804536059, 242.074524088926,
242.150253301397, 243.210012317901, 243.231712093644, 244.234651750364,
246.181131744937, 260.197508749868, 262.27396290581, 271.299233346565,
274.213374039433, 275.148637299659, 278.171019911663, 279.144330301785,
293.097720472189, 313.113784230095, 314.114409156757, 316.093449118511,
317.090293524496, 328.081080397556, 355.282902301772, 361.024972690575,
383.329153643144, 389.110097790571, 399.345066579663, 430.887197376519,
432.884373607377, 447.347205329621, 453.467186347803
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D.1.2 Negative Mode

The following lists contain mass-to-charge ratios of negative mode ions that
were identified to Granger-cause different phases of sleep.

Wakefulness:

60.8067402701685, 60.9936302748408, 64.01160035029, 69.0347104758678,
73.0293105757328, 75.9800906495023, 77.0242106756053, 79.002960725074,
79.9989707499743, 82.9714108242853, 84.992640874816, 85.0289708757243,
86.032160900804, 86.738600918465, 87.0082509252063, 88.711320967783,
88.747680968692, 88.9876209746905, 89.011360975284, 89.0241009756025,
90.0271810006795, 91.0274110256853, 94.998041124951, 95.9516611487915,
96.9594111739853, 97.0288111757203, 97.0651811766295, 98.0364112009103,
99.044321226108, 101.059911276498, 102.063291301582, 103.002951325074,
103.039331325983, 104.009811350245, 105.018581375465, 106.026161400654,
107.01521142538, 107.034271425857, 113.023661575592, 115.998291649957,
116.034941650874, 116.04278165107, 117.043891676097, 117.054821676371,
119.034191725855, 120.041921751048, 122.02201180055, 123.987851849696,
124.983131874578, 124.999391874985, 128.03441195086, 129.05481197637,
130.058182001455, 130.997682024942, 132.041252051031, 133.049772076244,
134.057432101436, 134.992632124816, 135.029092125727, 135.065412126635,
136.99038217476, 140.034302250858, 140.98440227461, 143.070442326761,
143.992952349824, 144.110272352757, 146.023442400586, 147.029142425729,
147.042212426055, 147.065532426638, 148.036952450924, 148.073152451829,
149.044822476121, 149.059432476486, 150.001682500042, 150.052622501316,
150.987642524691, 151.060042526501, 151.98278254957, 152.01918255048,
153.028932575723, 159.101672727542, 160.036602750915, 161.044572776114,
162.049622801241, 163.060152826504, 164.032972850824, 164.063572851589,
165.039542875989, 165.064372876609, 166.047022901176, 166.999422924986,
167.055122926378, 168.996252974906, 175.023933125598, 175.060313126508,
176.065743151644, 177.039533175988, 177.075793176895, 178.046733201168,
178.996593224915, 179.055273226382, 180.028443250711, 180.058653251466,
181.034293275857, 181.07081327677, 182.020033300501, 182.043103301078,
182.074433301861, 183.049893326247, 184.057903351448, 185.153943378849,
192.998693574967, 193.034653575866, 193.049793576245, 194.030773600769,
194.042703601068, 195.050493626262, 196.023313650583, 196.05838365146,
197.066053676651, 198.038693700967, 198.06919370173, 199.097143727429,
199.169853729246, 200.173353754334, 201.076263776907, 204.135903853398,
206.008883900222, 207.050443926261, 209.029693975742, 210.037644000941,
211.024584025615, 211.04560402614, 211.0599840265, 212.042294051057,
212.053244051331, 213.055164076379, 213.076124076903, 214.056764101419,
215.091954127299, 217.143974178599, 218.150774203769, 220.058364251459,
220.178324254458, 224.040704351018, 226.032584400815, 226.056074401402,
228.047964451199, 229.107474477687, 230.151304503783, 231.086654527166,
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231.159284528982, 232.093084552327, 232.167294554182, 233.065904576648,
233.079364576984, 235.045174626129, 235.060674626517, 237.0240046756,
237.041164676029, 239.075904726898, 239.164644729116, 240.084514752113,
241.091724777293, 242.05121480128, 243.050544826264, 244.167074854177,
245.10278487757, 245.175404879385, 246.146254903656, 246.182654904566,
247.08198492705, 257.239065180977, 261.097835277446, 262.105325302633,
263.076945326924, 263.113395327835, 264.084145352104, 266.063885401597,
267.195765429894, 270.214905505373, 273.170375579259, 274.177725604443,
275.185765629644, 276.084565652114, 277.092755677319, 278.099885702497,
279.072025726801, 279.108605727715, 280.079955751999, 281.248445781211,
282.059795801495, 283.264295831607, 284.267695856692, 285.065345876634,
285.207015880175, 285.270845881771, 286.214635905366, 287.150475928762,
291.108946027724, 294.096276102407, 295.067706126693, 295.103006127575,
295.228086130702, 299.186666229667, 300.193396254835, 300.262886256572,
301.238736280968, 302.242316306058, 303.145626328641, 303.216966330424,
303.244536331113, 304.151826353796, 305.16120637903, 309.083346477084,
311.223096530577, 315.253356631334, 316.187776654694, 316.261676656542,
317.124446678111, 317.233116680828, 317.265406681635, 318.204566705114,
319.139896728497, 320.14760675369, 321.155146778879, 326.085626902141,
326.158216903955, 327.253756931344, 329.269546981739, 330.272917006823,
331.139857028496, 331.246997031175, 331.275407031885, 332.219807055495,
333.225577080639, 334.198857104971, 335.135027128376, 336.141907153548,
344.219777355494, 346.2360074059, 347.207517430188, 348.215017455375,
349.150917478773, 350.228847505721, 351.130227528256, 352.138467553462,
352.211037555276, 353.145387578635, 354.153537603838, 357.192837679821,
359.208617730215, 360.252547756314, 362.15878780397, 362.231257805781,
375.239678130992, 376.247048156176, 391.19799852995, 394.185498604637,
406.185508904638

NREM:

73.0293105757328, 75.0086306252158, 75.9800906495023, 76.0120506503013,
77.0242106756053, 79.002960725074, 79.9989707499743, 80.9744107743603,
84.0085508502138, 84.992640874816, 85.0289708757243, 86.738600918465,
87.0082509252063, 88.711320967783, 88.747680968692, 89.0241009756025,
90.0271810006795, 90.720561018014, 91.003561025089, 91.0274110256853,
91.7208110430203, 92.0065510501638, 93.0786110769653, 93.9902610997565,
94.998041124951, 95.9516611487915, 96.9594111739853, 101.059911276498,
102.018931300473, 103.002951325074, 103.039331325983, 104.009811350245,
105.018581375465, 106.026161400654, 106.997871424947, 107.034271425857,
113.023661575592, 116.009871650247, 116.04278165107, 117.043891676097,
119.034191725855, 120.041921751048, 122.980061824502, 124.00041185001,
128.03441195086, 132.041252051031, 133.049772076244, 134.057432101436,
135.029092125727, 136.037252150931, 136.99038217476, 137.023892175597,
147.065532426638, 148.036952450924, 149.044822476121, 150.052622501316,
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150.987642524691, 151.060042526501, 152.01918255048, 160.024152750604,
161.044572776114, 164.032972850824, 165.039542875989, 167.055122926378,
177.039533175988, 178.013463200337, 178.046733201168, 178.982163224554,
179.055273226382, 180.028443250711, 180.058653251466, 181.07081327677,
182.043103301078, 182.074433301861, 183.049893326247, 193.034653575866,
194.042703601068, 195.050493626262, 196.05838365146, 197.066053676651,
198.038693700967, 198.06919370173, 207.050443926261, 210.037644000941,
211.04560402614, 212.053244051331, 213.055164076379, 228.047964451199,
241.054564776364, 242.05121480128, 244.167074854177, 261.097835277446,
275.185765629644, 280.079955751999, 293.088336077208, 294.096276102407,
295.067706126693, 295.103006127575, 309.083346477084, 310.090956502274,
317.233116680828, 318.204566705114, 326.085626902141, 326.158216903955,
332.219807055495, 333.225577080639

REM:

72.993040574826, 75.0086306252158, 75.9800906495023, 76.0120506503013,
79.9989707499743, 80.9744107743603, 82.9714108242853, 85.0289708757243,
86.032160900804, 86.738600918465, 87.0082509252063, 88.747680968692,
89.011360975284, 89.0241009756025, 90.0271810006795, 90.720561018014,
91.003561025089, 91.0274110256853, 91.7208110430203, 92.0065510501638,
92.9742210743555, 93.0786110769653, 94.998041124951, 102.018931300473,
103.039331325983, 106.026161400654, 106.997871424947, 107.01521142538,
107.034271425857, 111.01880152547, 113.023661575592, 115.998291649957,
116.009871650247, 116.034941650874, 117.043891676097, 121.013441775336,
122.980061824502, 123.987851849696, 124.00041185001, 124.983131874578,
124.999391874985, 125.010761875269, 125.99558189989, 127.002541925064,
128.03441195086, 133.013442075336, 135.029092125727, 135.065412126635,
136.037252150931, 139.997822249946, 140.98440227461, 140.992752274819,
143.992952349824, 147.029142425729, 149.044822476121, 150.001682500042,
150.052622501316, 151.060042526501, 152.01918255048, 160.024152750604,
162.018442800461, 164.007622850191, 165.039542875989, 167.007442925186,
169.064962976624, 170.068123001703, 177.039533175988, 178.013463200337,
178.982163224554, 178.996593224915, 180.058653251466, 181.07081327677,
182.074433301861, 189.03961347599, 190.013733500343, 190.997713524943,
191.106853527671, 193.034653575866, 195.050493626262, 195.064663626617,
196.05838365146, 197.066053676651, 198.06919370173, 199.024973725624,
202.063033801576, 205.013503875338, 206.008883900222, 209.029693975742,
210.037644000941, 212.053244051331, 219.174984229375, 220.178324254458,
221.065944276649, 225.112494377812, 226.056074401402, 226.068094401702,
227.091714427293, 227.164564429114, 229.143674478592, 230.151304503783,
231.159284528982, 232.056864551422, 232.167294554182, 239.164644729116,
241.054564776364, 241.107434777686, 241.180464779512, 242.05121480128,
244.167074854177, 245.175404879385, 255.159985129, 255.232565130814,
256.235965155899, 267.159385428985, 269.174985479375, 273.170375579259,
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275.185765629644, 281.248445781211, 283.264295831607, 284.267695856692,
285.270845881771, 295.103006127575, 310.090956502274, 326.158216903955,
352.211037555276, 353.218517580463

D.2 Granger Effects

D.2.1 Positive Mode

The following lists contain mass-to-charge ratios of positive mode ions that
were identified to be Granger-caused by different phases of sleep.

Wakefulness:

51.042273890874, 65.0231132388371, 69.06988, 71.0491586058439,
73.0496017576813, 75.0442286410383, 76.047528295076, 78.0314191853689,
79.0755636353184, 80.04948, 81.000451019127, 83.049295208478,
84.0567768618971, 89.0233212424452, 90.0266276072504, 91.0562446158381,
92.057831342461, 93.0546681401631, 99.0106501617184, 99.0440707359613,
100.051208017493, 100.06126818984, 107.033774588533, 109.066966646674,
110.021001269491, 110.070452019458, 111.064836924014, 117.054658510567,
118.065030872907, 119.106713252802, 120.109894849693, 121.085905849639,
124.096458264414, 125.080828445829, 128.032858072216, 134.059756333431,
134.081076536013, 135.065505847178, 136.096555496559, 137.132555066338,
138.135894194824, 139.148013244918, 144.138294898655, 146.117649715453,
148.039502970709, 148.096923348219, 149.04458941481, 150.026885365465,
152.016576294588, 152.091436674958, 152.127626858015, 160.097102449594,
160.133312491838, 163.060093400642, 164.091922490765, 166.143758659002,
167.127755829265, 170.072603305602, 172.133360736814, 174.112685543623,
174.149065234836, 178.107204990319, 180.159248953508, 186.148775679665,
186.155575561056, 188.128030119628, 188.164299449449, 190.107252660669,
192.122972838713, 194.138421619266, 200.128653626368, 201.184890599689,
204.122996506883, 212.200766246293, 213.203776351641, 216.196599466429,
218.138524862507, 223.169263788512, 228.167543674968, 231.122266187116,
232.190343241402, 236.073658417814, 236.112627983513, 243.231712093644,
245.137972460505, 248.257940371348, 252.232518795873, 260.197508749868,
261.242255898871, 262.27396290581, 266.248259677328, 271.299233346565,
274.213374039433, 275.17055690175, 278.171019911663, 279.144330301785,
281.320174394414, 289.273973747315, 303.020342640102, 304.248313159125,
314.114409156757, 316.32093101381, 328.010893017507, 330.007958332551,
332.118769144975, 357.04792008628, 358.048375144379, 359.027081201626,
360.027496761511, 361.024972690575, 372.318168958412, 388.126379584427,
393.288721654869, 399.345066579663, 422.264730648397, 430.887197376519,
432.884373607377, 462.148298871756, 463.147599445635.
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NREM:

69.06988, 71.0491586058439, 73.0496017576813, 75.0442286410383,
76.047528295076, 78.0314191853689, 79.0213514685799, 79.0755636353184,
83.049295208478, 84.0567768618971, 89.0233212424452, 90.0266276072504,
93.0546681401631, 99.0106501617184, 100.051208017493, 100.06126818984,
107.033774588533, 109.066966646674, 110.021001269491, 110.070452019458,
114.0913, 115.094643438855, 118.065030872907, 119.106713252802,
120.109894849693, 121.028485209804, 122.031806265552, 124.096458264414,
125.080828445829, 134.059756333431, 134.081076536013, 135.065505847178,
136.096555496559, 144.138294898655, 146.117649715453, 148.096923348219,
152.016576294588, 152.091436674958, 152.127626858015, 160.097102449594,
160.133312491838, 164.091922490765, 166.143758659002, 167.127755829265,
170.072603305602, 174.112685543623, 174.149065234836, 176.606831820195,
180.159248953508, 186.148775679665, 188.164299449449, 194.56051283579,
212.200766246293, 213.203776351641, 215.127609323884, 216.196599466429,
228.167543674968, 236.073658417814, 237.075857332203, 258.100623696766,
275.17055690175, 281.320174394414, 289.273973747315, 303.020342640102,
357.04792008628, 359.027081201626, 360.027496761511, 361.024972690575,
388.126379584427, 462.148298871756.

REM:

58.8684561381039, 59.0491, 60.0437209383538, 60.0517223565092,
63.0436720381458, 69.06988, 71.0491586058439, 77.0600125463731,
79.0391621821154, 84.0567768618971, 89.0409515280725, 99.0106501617184,
100.051208017493, 107.033774588533, 107.070075170623, 108.761861910675,
109.049306373307, 111.064836924014, 113.02638526304, 118.065030872907,
118.086241128592, 119.08554300472, 119.106713252802, 120.109894849693,
126.714564987143, 135.044035645059, 137.132555066338, 138.135894194824,
149.071519582609, 152.127626858015, 159.138101066512, 160.141162500899,
172.133360736814, 173.153663296183, 174.156785169171, 186.148775679665,
198.11308732925, 212.200766246293, 213.203776351641, 215.127609323884,
215.200417954294, 216.098681262428, 216.131500659933, 218.174364242184,
219.047289332663, 219.174277195235, 220.05056265899, 220.178510567241,
221.043296629624, 229.252219609162, 235.04204001725, 235.205328167707,
236.175357284987, 236.208786913016, 237.057647532128, 238.060996593023,
239.054285905404, 243.210012317901, 243.231712093644, 244.234651750364,
245.247161338585, 246.250461032766, 251.185019885526, 259.242120249625,
260.197508749868, 262.27396290581, 263.276169977271, 266.248259677328,
271.299233346565, 272.245827787126, 273.257740673641, 274.213374039433,
278.171019911663, 295.211730451883, 313.113784230095, 327.252651295341,
333.285985283392, 355.282902301772, 357.29848131253, 361.024972690575,
383.329153643144, 430.887197376519, 432.884373607377, 453.467186347803.
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D.2.2 Negative Mode

The following lists contain mass-to-charge ratios of negative mode ions that
were identified to be Granger-caused by different phases of sleep.

Wakefulness:

60.8067402701685, 60.9936302748408, 62.9972603249315, 69.0347104758678,
71.0502605262565, 73.0293105757328, 75.9800906495023, 77.0242106756053,
79.9989707499743, 81.0342207758555, 82.9714108242853, 83.0497708262443,
84.020720850518, 84.992640874816, 85.0289708757243, 86.032160900804,
86.738600918465, 87.0082509252063, 88.711320967783, 88.747680968692,
88.9876209746905, 89.011360975284, 89.0241009756025, 90.0271810006795,
90.992841024821, 91.0274110256853, 93.9902610997565, 95.9516611487915,
96.9594111739853, 96.9687011742175, 97.0288111757203, 97.0651811766295,
98.0364112009103, 98.9657412241435, 99.044321226108, 100.015531250388,
101.059911276498, 102.063291301582, 103.039331325983, 105.018581375465,
106.026161400654, 107.01521142538, 113.023661575592, 114.027321600683,
115.998291649957, 116.009871650247, 116.034941650874, 116.04278165107,
118.997741724944, 119.034191725855, 120.041921751048, 123.987851849696,
124.983131874578, 124.999391874985, 128.03441195086, 129.018431975461,
129.05481197637, 130.058182001455, 130.997682024942, 132.029502050738,
132.041252051031, 133.049772076244, 134.057432101436, 135.029092125727,
135.065412126635, 136.99038217476, 140.98440227461, 143.070442326761,
143.992952349824, 146.023442400586, 147.029142425729, 147.042212426055,
148.024362450609, 148.036952450924, 148.073152451829, 149.044822476121,
150.001682500042, 150.052622501316, 150.987642524691, 151.060042526501,
152.01918255048, 153.028932575723, 157.08600267715, 158.089492702237,
159.101672727542, 161.008222775206, 161.044572776114, 162.049622801241,
163.023752825594, 163.060152826504, 164.063572851589, 165.039542875989,
165.053892876347, 165.064372876609, 166.047022901176, 167.007442925186,
167.055122926378, 168.996252974906, 169.024832975621, 170.992663024817,
172.023963050599, 175.060313126508, 176.065743151644, 177.039533175988,
178.013463200337, 178.996593224915, 179.055273226382, 180.058653251466,
181.034293275857, 181.07081327677, 182.020033300501, 182.043103301078,
182.074433301861, 183.049893326247, 184.057903351448, 187.038283425957,
189.0760034769, 190.013733500343, 192.050523551263, 193.034653575866,
194.030773600769, 194.042703601068, 195.050493626262, 196.05838365146,
197.066053676651, 198.06919370173, 199.097143727429, 199.169853729246,
203.091973827299, 206.008883900222, 207.050443926261, 209.029693975742,
210.037644000941, 211.04560402614, 212.042294051057, 212.053244051331,
213.055164076379, 213.185464079637, 214.056764101419, 215.091954127299,
218.150774203769, 219.174984229375, 220.178324254458, 224.040704351018,
225.112494377812, 225.18560437964, 226.032584400815, 226.056074401402,
227.028284425707, 227.038774425969, 228.047964451199, 229.050314476258,

92



D.2. Granger Effects

229.107474477687, 229.143674478592, 230.051874501297, 230.151304503783,
231.086654527166, 231.159284528982, 232.093084552327, 232.167294554182,
233.065904576648, 233.079364576984, 237.0240046756, 239.040024726001,
239.164644729116, 240.084514752113, 241.054564776364, 241.091724777293,
242.05121480128, 243.050544826264, 244.167074854177, 245.10278487757,
245.175404879385, 246.146254903656, 246.182654904566, 255.232565130814,
256.235965155899, 257.175665179392, 257.239065180977, 259.191225229781,
261.097835277446, 262.105325302633, 263.076945326924, 263.113395327835,
269.211435480286, 271.191155529779, 271.226975530674, 272.230365555759,
274.177725604443, 275.185765629644, 275.21761563044, 276.084565652114,
277.092755677319, 278.099885702497, 279.072025726801, 280.079955751999,
281.248445781211, 283.191315829783, 283.264295831607, 284.267695856692,
285.207015880175, 285.270845881771, 286.214635905366, 287.150475928762,
287.222445930561, 294.096276102407, 295.067706126693, 295.103006127575,
295.228086130702, 297.243826181096, 298.247406206185, 299.186666229667,
299.259476231487, 300.229656255741, 300.262886256572, 301.202166280054,
301.238736280968, 302.209556305239, 302.242316306058, 303.145626328641,
303.216966330424, 303.244536331113, 309.083346477084, 310.090956502274,
311.223096530577, 314.246246606156, 315.253356631334, 316.261676656542,
317.124446678111, 317.265406681635, 318.204566705114, 319.139896728497,
320.14760675369, 321.155146778879, 326.085626902141, 327.253756931344,
329.232866980822, 329.269546981739, 330.272917006823, 331.275407031885,
332.219807055495, 333.119267077982, 333.225577080639, 335.135027128376,
343.212937330323, 344.219777355494, 344.252337356308, 345.264907381623,
346.2360074059, 346.267567406689, 347.171397429285, 347.207517430188,
347.242657431066, 348.215017455375, 349.150917478773, 350.228847505721,
357.192837679821, 360.252547756314, 361.258147781454, 362.15878780397,
362.231257805781, 362.261437806536, 375.203528130088, 375.239678130992,
376.247048156176, 394.185498604637, 406.185508904638.

NREM:

69.0347104758678, 73.0293105757328, 75.9800906495023, 81.0342207758555,
84.992640874816, 85.0289708757243, 86.032160900804, 87.0082509252063,
88.747680968692, 89.0241009756025, 90.0271810006795, 90.720561018014,
91.003561025089, 91.0274110256853, 91.7208110430203, 92.0065510501638,
93.0786110769653, 93.9902610997565, 95.9516611487915, 98.0364112009103,
101.059911276498, 102.018931300473, 105.018581375465, 106.026161400654,
107.034271425857, 111.044341526109, 113.023661575592, 114.67959161699,
115.039351625984, 116.009871650247, 117.018521675463, 117.043891676097,
119.034191725855, 120.041921751048, 124.00041185001, 128.03441195086,
129.05481197637, 130.058182001455, 132.041252051031, 133.013442075336,
133.049772076244, 134.057432101436, 135.029092125727, 135.065412126635,
136.037252150931, 136.99038217476, 137.023892175597, 146.023442400586,
147.029142425729, 149.044822476121, 150.052622501316, 151.060042526501,
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152.01918255048, 157.08600267715, 159.101672727542, 161.044572776114,
163.060152826504, 164.032972850824, 164.063572851589, 165.039542875989,
166.047022901176, 167.055122926378, 175.060313126508, 177.039533175988,
178.046733201168, 179.055273226382, 180.028443250711, 180.058653251466,
181.034293275857, 181.059973276499, 181.07081327677, 182.043103301078,
182.074433301861, 183.049893326247, 190.08319350208, 192.050523551263,
193.034653575866, 194.042703601068, 195.050493626262, 196.05838365146,
197.066053676651, 198.038693700967, 198.06919370173, 207.050443926261,
209.029693975742, 210.037644000941, 211.04560402614, 212.053244051331,
213.055164076379, 226.032584400815, 241.091724777293, 242.05121480128,
269.211435480286, 271.226975530674, 272.230365555759, 280.079955751999,
286.214635905366, 294.096276102407, 295.067706126693, 295.103006127575,
303.216966330424, 309.083346477084, 314.246246606156, 317.233116680828,
318.204566705114, 326.085626902141, 329.232866980822, 330.240337006008,
331.246997031175, 332.219807055495, 333.225577080639, 346.2360074059,
348.215017455375.

REM:

50.0024300000607, 72.993040574826, 75.9800906495023, 79.9989707499743,
80.9744107743603, 85.0289708757243, 86.738600918465, 87.0082509252063,
88.747680968692, 89.011360975284, 89.0241009756025, 90.0271810006795,
90.720561018014, 91.003561025089, 91.0274110256853, 91.7208110430203,
92.0065510501638, 92.9742210743555, 93.0786110769653, 93.9902610997565,
94.998041124951, 102.018931300473, 106.997871424947, 107.034271425857,
113.023661575592, 117.043891676097, 120.041921751048, 121.028631775716,
122.980061824502, 123.987851849696, 124.00041185001, 124.983131874578,
125.010761875269, 127.002541925064, 129.018431975461, 129.05481197637,
131.059452026486, 133.013442075336, 135.029092125727, 135.065412126635,
136.037252150931, 139.997822249946, 143.070442326761, 149.023692475592,
149.044822476121, 150.001682500042, 150.052622501316, 151.02438252561,
151.060042526501, 152.01918255048, 157.01321267533, 161.080852777021,
162.018442800461, 165.039542875989, 167.007442925186, 169.064962976624,
170.068123001703, 177.039533175988, 178.013463200337, 178.996593224915,
179.055273226382, 180.058653251466, 181.059973276499, 181.07081327677,
182.074433301861, 189.03961347599, 190.013733500343, 191.106853527671,
193.034653575866, 194.042703601068, 195.050493626262, 196.05838365146,
197.066053676651, 198.038693700967, 198.06919370173, 202.063033801576,
203.091973827299, 206.008883900222, 209.029693975742, 210.037644000941,
212.053244051331, 213.055164076379, 221.065944276649, 223.081694327042,
225.076144376904, 225.112494377812, 226.068094401702, 230.151304503783,
231.159284528982, 237.041164676029, 239.164644729116, 241.107434777686,
243.050544826264, 244.167074854177, 245.175404879385, 255.159985129,
255.232565130814, 256.235965155899, 267.159385428985, 269.174985479375,
273.170375579259, 275.185765629644, 281.248445781211, 283.264295831607,
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284.267695856692, 285.270845881771, 289.129635978241, 301.130036278251,
326.158216903955, 347.171397429285, 352.211037555276, 368.20641795516.

D.3 CV Results

Sleep Phase
Average Accuracy(±2SD)

Positive Negative
Wake 0.719(±0.133) 0.839(±0.148)

NREM 0.532(±0.336) 0.521(±0.099)
REM 0.792(±0.164) 0.759(±0.176)

Table D.1: Average accuracy scores and standard deviations for leave-one-subject-out cross-
validation of GC-MLPs for different phases of sleep obtained from positive and negative modes.
Cells shown in bold correspond to mean accuracy scores that are significantly greater-than 0.5
at level α = 0.05 (t-test p-values were adjusted using the Bonferroni method).
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