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A B S T R A C T

Appendicitis is among the most frequent reasons for pediatric abdominal surgeries. Previous decision support
systems for appendicitis have focused on clinical, laboratory, scoring, and computed tomography data and
have ignored abdominal ultrasound, despite its noninvasive nature and widespread availability. In this work,
we present interpretable machine learning models for predicting the diagnosis, management and severity of
suspected appendicitis using ultrasound images. Our approach utilizes concept bottleneck models (CBM) that
facilitate interpretation and interaction with high-level concepts understandable to clinicians. Furthermore, we
extend CBMs to prediction problems with multiple views and incomplete concept sets. Our models were trained
on a dataset comprising 579 pediatric patients with 1709 ultrasound images accompanied by clinical and
laboratory data. Results show that our proposed method enables clinicians to utilize a human-understandable
and intervenable predictive model without compromising performance or requiring time-consuming image
annotation when deployed. For predicting the diagnosis, the extended multiview CBM attained an AUROC of
0.80 and an AUPR of 0.92, performing comparably to similar black-box neural networks trained and tested
on the same dataset.
1. Introduction

Appendicitis is one of the most frequent causes of abdominal pain
resulting in hospital admissions of patients under 18 (Wier et al., 2013).
The diagnosis can be challenging and relies on a combination of clini-
cal, laboratory and imaging parameters (Saverio et al., 2016). Despite
extensive research, no specific and practically useful biomarkers for the
early detection of appendicitis have been identified (Acharya et al.,
2016; Kiss et al., 2021). Epidemiologically and clinically, there are
two forms of appendicitis: uncomplicated (subacute/exudative, phleg-
monous) and complicated (gangrenous, perforated) (Andersson, 2006;
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Bhangu et al., 2015; Kiss et al., 2021). Management forms include
surgery as the standard method (Saverio et al., 2016; Gorter et al.,
2016) or conservative therapy (Andersson, 2006; Svensson et al., 2012,
2015; Gorter et al., 2016; CODA Collaborative, 2020).

Typical imaging modalities for suspected pediatric appendicitis in-
clude ultrasonography (US), magnetic resonance imaging (MRI), and
computed tomography (CT). US has become the primary choice due to
widespread availability, lack of radiation, and improvements in resolu-
tion over the past years (Park et al., 2011). Repeated US examinations,
including B(rightness)-mode and Doppler, during the observation phase
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can improve diagnostic accuracy and help identify disease progres-
sion (Dingemann and Ure, 2012; Ohba et al., 2016; Gorter et al.,
2016).

Extensive research has been conducted on utilizing machine learn-
ing (ML) models to diagnose and manage patients with suspected
appendicitis (Hsieh et al., 2011; Deleger et al., 2013; Reismann et al.,
2019; Aydin et al., 2020; Akmese et al., 2020; Stiel et al., 2020;
Rajpurkar et al., 2020; Marcinkevics et al., 2021; Roig Aparicio et al.,
2021; Xia et al., 2022). In brief, most models either utilize simple
clinical and laboratory data (Hsieh et al., 2011; Aydin et al., 2020;
Akmese et al., 2020; Xia et al., 2022), rely on hand-crafted US anno-
tations (Reismann et al., 2019; Stiel et al., 2020; Marcinkevics et al.,
2021; Roig Aparicio et al., 2021), or require more expensive and in-
vasive imaging modalities, such as CT (Rajpurkar et al., 2020). Despite
having lower sensitivity and specificity than CT, US has been advocated
as the preferred imaging modality for diagnosing acute appendicitis due
to the absence of ionizing radiation and cost-effectiveness (Mostbeck
et al., 2016). Although promising and practical, fully automated analy-
sis of abdominal US images in this context remains an under-explored
approach.

US imaging gives natural rise to multiview and multimodal data
(Wang et al., 2020; Qian et al., 2021). For instance, the risk of breast
cancer may be assessed based on multiview and multimodal US im-
ages of lesions. More generally, multiview learning (Xu et al., 2013)
concerns itself with the data comprising multiple views, essentially
feature subsets, of the same source object. Additionally, multimodal
learning (Baltrušaitis et al., 2019) studies models combining, or fusing,
multiple heterogeneous modalities, e.g. images and text. Both research
directions have experienced renewed interest in the light of contrastive
and self-supervised learning (Tian et al., 2020; von Kügelgen et al.,
2021) and generative modeling (Suzuki and Matsuo, 2022).

Interpretable machine learning has emerged as an active research
direction, (Doshi-Velez and Kim, 2017; Rudin, 2019), with interpre-
tability argued to be an essential model design principle for high-stakes
application domains, such as healthcare. One recently re-explored ap-
proach is prediction based on high-level and human-understandable
concepts (Kumar et al., 2009; Lampert et al., 2009; Koh et al., 2020)
or attributes. Most frameworks for concept-based prediction require
auxiliary supervision in the form of high-level semantic features during
training. Typically, two models are trained, as, for instance, in concept
bottleneck models (CBM) (Koh et al., 2020): (i) one mapping from the
explanatory variables to the given concepts and (ii) another predicting
the target variable based on the previously predicted concept values.
Such concept-based models are deemed interpretable since concepts
can be inspected alongside the final model outputs and perceived as
‘‘explanations’’. Additionally, as opposed to classical multitask learning,
a human user can intervene and interact with the model at test time by
editing concept predictions and affecting downstream output. Beyond
the restricted supervised setting mentioned earlier, there have been
several efforts to learn semantically meaningful and identifiable rep-
resentations when the concepts are not given explicitly (Khemakhem
et al., 2020; Taeb et al., 2022).

This work presents the first effort at leveraging ML to predict diag-
nosis, management, and severity in pediatric patients with suspected
appendicitis directly from abdominal US images, an imaging modality
requently used in daily clinical practice. To this end, our models
tilize interpretable concept-based classification approach due to its
otential acceptance among clinicians and investigate the trade-off
etween interpretability and predictive performance. Furthermore, we
ropose extensions of the concept bottleneck models (Koh et al., 2020)
o improve their scalability to real-world medical imaging data, con-
ributing to the recent works identifying and addressing the limitations
f concept-based models (Mahinpei et al., 2021; Margeloiu et al., 2021;
awada and Nakamura, 2022; Marconato et al., 2022). Specifically,
e extend conventional CBMs (i) to the multiview classification setting
2

nd (ii) propose a semi-supervised representation learning approach
to overcome the limitations of incomplete concept sets, i.e. when the
given set of concepts does not capture the entire predictive relationship
between the images and labels, making it challenging to achieve high
predictive performance. The presented generalization of the CBMs to
multiple views and incomplete concept sets is summarized in Fig. 1.
It is not restricted to the considered use case of pediatric appendicitis
and ultrasound and can be applied to other multiview and multimodal
medical imaging datasets.

2. Materials and methods

2.1. Dataset

In our retrospective analysis, we examined data from a cohort of
579 children and adolescents (aged 0–18 years) admitted as inpatients
to the Department of Pediatric Surgery and Pediatric Orthopedics at
the tertiary Children’s Hospital St. Hedwig in Regensburg, Germany
between January 1, 2016, and December 31, 2021, with suspected
appendicitis. Our study builds and expands upon the previous analysis
of a smaller cohort of patients, published by Marcinkevics et al. (2021).

We utilized the hospital’s database to collect retrospective data,
including (potentially) multiple abdominal B-mode ultrasound images
for each patient (totaling 1709 images). The number of views per
subject ranges from 1 to 15; the images depict various regions of
interest, such as the abdomen’s right lower quadrant (RLQ), appendix,
intestines, lymph nodes, and reproductive organs (Fig. 2). Ultrasound
images from admission and, if available, initial clinical course were
retrieved using the software Clinic WinData/E&L. For surgical patients,
US images from the preoperative clinical course were also included.
The images were acquired on Toshiba Xario and Aplio XG machines
using Toshiba 6 MHz Convex and 12 MHz Linear transducers. For
each subject, all images relevant to the findings from Table 2 were
included. Images of the organs unrelated to appendicitis, such as the
liver or spleen, were excluded from the dataset. We also retrieved
information encompassing laboratory tests, physical examination re-
sults, clinical scores, such as Alvarado (AS) and pediatric appendicitis
(PAS) scores (Alvarado, 1986; Samuel, 2002; RSGobotWMR, 2020). AS
and PAS were utilized due to the widespread use by pediatricians and
pediatric surgeons for the risk stratification of children and adolescents
with abdominal pain (Dingemann and Ure, 2012). Last but not least,
we collected expert-produced ultrasonographic findings represented by
categorically-valued features. A subset of the latter was identified as
high-level concepts relevant to decision support (Table 2). For patients
treated operatively, surgical and histological parameters were recorded.

The subjects were labeled w.r.t. three target variables: (i) diagnosis
(appendicitis vs. no appendicitis), (ii) management (surgical vs. conserva-
tive), and (iii) severity (complicated vs. uncomplicated or no appendicitis).
The diagnosis was confirmed histologically in the patients who un-
derwent appendectomy. Subjects treated conservatively were labeled
as having appendicitis if their appendix diameter was at least 6mm
and either AS or PAS were at least 4. Note that the labeling criterion
above is only a proxy for the ground-truth disease status. AS and
PAS help exclude children with no appendicitis (RSGobotWMR, 2020),
whereas the addition of the US information on the enlarged appendix
has been shown to increase the positive predictive value (Gendel et al.,
2011; Dingemann and Ure, 2012). This labeling criterion has already
been utilized in the previous analyses of the data from an overlap-
ping patient cohort (Marcinkevics et al., 2021; Roig Aparicio et al.,
2021). Marcinkevics et al. (2021) present a more detailed exploration
to justify it. The management label reflects the decision made by a
senior pediatric surgeon based on clinical, laboratory and US data.
For the severity, complicated appendicitis includes cases with abscess
formation, gangrene, or perforation.

Note that the analysis below utilizes only ultrasound images and
findings extracted from them. Our goal was to explore US image

analysis and its benefits for predictive models for pediatric appendicitis.
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Fig. 1. Schematic summary of the proposed multiview concept bottleneck model (MVCBM) and its semi-supervised extension (SSMVCBM). (I) Multiview ultrasound images are
mapped to features using a shared encoder neural network; (II) features are aggregated across the views; (III) high-level human-understandable concepts and representations are
predicted based on the aggregated features; (IV) using concepts and representations, the target prediction is made. The MVCBM only includes view encoding, fusion, and concept
prediction, whereas the SSMVCBM also performs representation learning. During training, in addition to the target prediction loss, the MVCBM is supervised by the concept
prediction loss. The SSMVCBM is further penalized by an adversarial regularizer encouraging statistical independence between predicted concepts and representations.
Fig. 2. An example of multiple US images acquired from a single patient from the
pediatric appendicitis dataset. For this patient, views I and II correspond to longitudinal
and transverse sections of the appendix, respectively; view III depicts the reaction
in tissue surrounding the appendix. Original images (left) contain graphical interface
elements and expert-made markers, whereas preprocessed images (right) have been
inpainted, cropped, and padded.

Nevertheless, we publicize the entire dataset, including modalities
other than imaging. Table 1 and Appendix A.1 provide an overview
of the dataset used in the final analysis. Appendix A contains a more
comprehensive description of the dataset and its acquisition.

2.1.1. Data preprocessing
Prior to model development and evaluation, pre-processing was

performed on B-mode ultrasound images to eliminate undesired vari-
ability. The study being retrospective, ultrasonograms were collected as
per clinical routine, and therefore, original images contained graphical
user interface elements, markers, distance measurements, and other
annotations. We employed a generative inpainting model DeepFill (Yu
et al., 2018), to mask and fill such objects. Subsequently, images were
resized to 400 × 400 px2 dimensions using zero padding when needed.
3

Table 1
The contingency table of the pediatric appendicitis dataset of the management by
severity stratified by the diagnosis.

Diagnosis: appendicitis

Management Severity

complicated uncomplicated Total

surgical 97 135 232
conservative 0 151 151

Total 97 286 383

Diagnosis: no appendicitis

Management Severity

complicated uncomplicated Total

surgical 0 2 2
conservative 0 194 194

Total 0 196 196

Finally, contrast-limited histogram equalization (CLAHE) was applied,
and pixel intensities were normalized to the range of 0 and 1. Fig. 2
shows an example of the multiple US views acquired from a single
subject from our cohort before and after preprocessing.

2.2. Problem setting and notation

Throughout the remaining sections, we will assume the follow-
ing setting and notation. Consider a dataset comprising 𝑁 triples
(

{

𝒙𝑣𝑖
}𝑉𝑖
𝑣=1 , 𝒄𝑖, 𝑦𝑖

)

, for 1 ≤ 𝑖 ≤ 𝑁 , with view sequences
{

𝒙𝑣𝑖
}𝑉𝑖
𝑣=1, concept

vectors 𝒄𝑖 ∈ R𝐾 provided at training time, and labels 𝑦𝑖. Note that the
number of views 𝑉𝑖 ≥ 1 may vary across data points 1 ≤ 𝑖 ≤ 𝑁 . We will
concentrate on the scenario where all views can be preprocessed and
rescaled into the same dimensionality. Nevertheless, our approach can
be extended to heterogeneous data types.

Motivated by medical imaging applications, we focus on the data
exhibiting characteristics described informally below. (i) Partial ob-
servability : not all concepts are identifiable from all views. (ii) View
homogeneity : most views contain a considerable amount of shared infor-
mation and are visually similar. (iii) View ordering : views belonging to
the same data point may be loosely ordered, e.g. spatially, temporally,
or based on their importance for predicting the label. These proper-
ties are inspired by the multiview ultrasound dataset explored in our
experiments and support some design choices described below.
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2.3. Multiview concept bottleneck models

Below, we present a novel approach that extends the concept bot-
tleneck models (Koh et al., 2020) to the multiview classification sce-
nario. We refer to this extension as the multiview concept bottle-
neck model (MVCBM) hereon. A schematic overview of the MVCBM
architecture is shown in Fig. 1, while the model’s forward pass is
specified by Eqs. (1a)–(1d). In brief, MVCBM comprises four mod-
ules: (i) per-view feature extraction; (ii) feature fusion; (iii) concept
prediction, and (iv) label prediction.

To address scenarios where the set of concepts provided is incom-
plete, aka insufficient, either due to the lack of domain knowledge or
the cost of acquiring additional annotation, we have also developed a
semi-supervised variant of the MVCBM, referred to as semi-supervised
MVCBM (SSMVCBM). This approach not only utilizes the given con-
cepts but also learns an independent representation predictive of the
label. Note that this extension will be described in the later sections.

For data point 1 ≤ 𝑖 ≤ 𝑁 , a forward pass of the multiview concept
bottleneck is given by the following equations:

(i) Feature extraction:

𝒉𝑣𝑖 = 𝒉𝝍
(

𝒙𝑣𝑖
)

, 1 ≤ 𝑣 ≤ 𝑉𝑖, (1a)
(ii) Feature fusion:

�̄�𝑖 = 𝒓𝝃
(

{

𝒉𝑣𝑖
}𝑉𝑖
𝑣=1

)

, (1b)

iii) Concept prediction:

�̂�𝑖 = 𝒔𝜻
(

�̄�𝑖
)

, (1c)
(iv) Label prediction:

�̂�𝑖 = 𝑓𝜽
(

�̂�𝑖
)

, (1d)

where Latin letters correspond to functions and variables and Greek let-
ters denote learnable parameters. Observe that parameters 𝝓 = {𝝍 , 𝝃, 𝜻}
define the concept model 𝒈𝝓(⋅) mapping a multiview feature sequence
to the predicted concept values; whereas 𝑓𝜽(⋅) is the target model, link-
ing concepts and labels. Thus, similar to the vanilla concept bottleneck,
MVCBM’s forward pass can be rewritten as �̂�𝑖 = 𝑓𝜽

(

𝒈𝝓
(

{

𝒉𝑣𝑖
}𝑉𝑖
𝑣=1

))

. In
the following paragraphs, we detail each of the steps in Eq. (1).

Feature extraction. Given an ordered view sequence
{

𝒙𝑣𝑖
}𝑉𝑖
𝑣=1, we first

ncode each view into a lower-dimensional representation, as in
q. (1a). We employ a shared encoder neural network, denoted by
𝝍 (⋅). Weight sharing is justified by the view homogeneity and could
e helpful in smaller datasets with high missingness of views. On the
ther hand, in multimodal datasets, the dissimilarities between images
cquired from the same subject are significant and consistent. In this
cenario, it may be preferable to train a dedicated encoder for each
odality to learn modality-specific features. In practice, it may be
rudent to use a pretrained model to initialize 𝒉𝝍 (⋅), e.g. the use of

ResNet and VGG architectures pretrained on natural images is standard
for medical imaging applications (Cheplygina, 2019). As a result, we
obtain a sequence of view-specific features.

Feature fusion. To accommodate multiple views, we need to fuse,
i.e. aggregate, the view-specific features within the model, as in
Eq. (1b). MVCBM follows a hybrid fusion approach (Baltrušaitis et al.,
2019): rather than concatenating views at the input level (early fusion)
r training an ensemble of view-specific models (late fusion); we ag-
regate intermediate view-specific features 𝒉𝑣𝑖 from the previous step
ithin a single neural network. Although there are many viable fusion

unctions, in our context, the fusion must handle varying numbers of
iews per data point. As a naive approach, we consider arithmetic mean
cross the views �̄�𝑖 =

1
𝑉𝑖

∑𝑉𝑖
𝑣=1 𝒉

𝑣
𝑖 (Havaei et al., 2016).

More generally, in Eq. (1b) �̄�𝑖 denotes the fused feature vector
nd 𝒓𝝃 (⋅) is the fusion function with parameters 𝝃. Considering partial
bservability of the concepts and ordering of the views, we, in addition,
4

investigate aggregation via a learnable function. Similar to Ma et al.
(2019), who utilize this trick in multiview 3D shape recognition, we
combine view-specific representations via a long short-term memory
(LSTM) network. In particular, we set the aggregated representation
�̄�𝑖 to the last hidden state of the view sequence, i.e. at step 𝑉𝑖. Note
that both averaging and LSTM can handle varying numbers of views.
Nevertheless, there are other options for 𝒓𝝃 (⋅), e.g. Hadamard product or
weighted average, the investigation of which we leave for future work.

Concept and label prediction. The last two steps in Eqs. (1c)–(1d) are
similar to the vanilla concept bottleneck. First, we predict concepts �̂�𝑖
based on the fused representation �̄�𝑖, using a concept encoder network
𝒔𝜻 (⋅) parameterized by 𝜻 . Note that the choice of activation functions
at the output of 𝒔𝜻 (⋅) depends on the type of concepts and should be
adapted to whether an individual concept is categorically or continu-
ously valued. The vector �̂�𝑖 is then used as an input to the target model
𝑓𝜽(⋅), predicting the label �̂�. The output activation should be chosen
based on the downstream task, which can be, for example, classification
or regression.

Loss function and optimization. The parameters of vanilla CBMs can
be optimized using independent, sequential and joint procedures (Koh
et al., 2020). In this work, we focus on the sequential and joint ap-
proaches since they offer a more balanced trade-off between predictive
performance and intervenability, as shown experimentally by Koh et al.
(2020).

In the sequential training, we first optimize the concept model
parameters:

�̂� = argmin
𝝓

𝑁
∑

𝑖=1

𝐾
∑

𝑘=1
𝑤𝑡

𝑖𝑤
𝑐𝑘
𝑖 𝑐𝑘 (𝑐𝑖,𝑘, 𝑐𝑖,𝑘), (2)

where 𝑐𝑘 (⋅, ⋅) is the loss function for the 𝑘th concept, e.g. one could
use the cross-entropy for categorically valued and squared error for
a continuously valued concept, and 𝑐𝑖,𝑘 refers to the value of the 𝑘th
concept for the 𝑖th data point.

Additionally, to address potential imbalances in the concept distri-
butions and sparsity of specific concept-target combinations, we have
introduced weights 𝑤𝑐𝑘

𝑖 for the 𝑘th concept and 𝑤𝑡
𝑖 for the target

variable of the 𝑖th point, s.t. ∑𝑁
𝑖=1

∑𝐾
𝑘=1 𝑤

𝑐𝑘
𝑖 = 1 and ∑𝑁

𝑖=1 𝑤
𝑡
𝑖 = 1. In

practice, these weights can be set to the normalized inverse counts of
samples in the corresponding variable classes, i.e. 𝑤𝑡

𝑖 ∝ 1∕
∑𝑁

𝑗=1 𝟏{𝑦𝑗=𝑦𝑖
}

and 𝑤𝑐𝑘
𝑖 ∝ 1∕

∑𝑁
𝑗=1 𝟏{𝑐𝑗,𝑘=𝑐𝑖,𝑘

}, where 𝟏{⋅} is the indicator function.
However, other sample weighting schemes are viable.

Next, parameters �̂� are frozen, and the parameters of the target
model 𝑓𝜽 are optimized:

�̂� = argmin
𝜽

𝑁
∑

𝑖=1
𝑤𝑡

𝑖
𝑡 (𝑓𝜽

(

�̂�𝑖
)

, 𝑦𝑖
)

, (3)

where 𝑡(⋅, ⋅) is the loss function for the target task, and �̂�𝑖 are predic-
tions made by the frozen concept model 𝒈�̂�(⋅).

For the joint training, we combine the loss functions from Eqs. (2)
and (3) into a single objective:

�̂�, �̂� =argmin
𝝓,𝜽

{ 𝑁
∑

𝑖=1
𝑤𝑡

𝑖
𝑡(�̂�𝑖, 𝑦𝑖)+

𝛼
𝑁
∑

𝑖=1

𝐾
∑

𝑘=1
𝑤𝑡

𝑖𝑤
𝑐𝑘
𝑖 𝑐𝑘 (𝑐𝑖,𝑘, 𝑐𝑖,𝑘)

}

,

(4)

where 𝛼 > 0 controls the trade-off between target and concept pre-
dictive performance. Observe that parameters 𝝓 and 𝜽 are optimized
simultaneously.

Intervenability. A salient difference between CBMs and multitask mod-
els is that a practitioner utilizing a CBM model can interact with it
by intervening on concept predictions, e.g. ‘‘correcting’’ the model by

⋅
setting the predicted values to the ground truth 𝑐𝑖,𝑘 ⋅= 𝑐𝑖,𝑘. In particular,
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Fig. 3. Generative models that result in incomplete concept sets summarized as
directed graphical models. Shaded and unshaded nodes correspond to observed and
unobserved variables, respectively. For both (a) and (b), in general, 𝒙 ̸⟂⟂ 𝑦 | 𝒄 since
here exists an active path (Geiger et al., 1990) between 𝒙 and 𝑦 through unobserved

concepts 𝒄′.

for a data point 1 ≤ 𝑖 ≤ 𝑁 , the updated prediction after the intervention
n the concepts from a subset  ⊆ {1,… , 𝐾} is given by

�̂�𝑖 = 𝑓�̂�
(

�̂�{1,…,𝐾}⧵ , 𝒄
)

, (5)

here �̂� and 𝒄 refer to the predicted and ground truth concept vectors,
espectively. Note the notation abuse in the order of the arguments in
�̂�(⋅).

.4. Semi-supervised multiview concept bottleneck models

As previously stated, the set of 𝐾 concepts given at the training
ay prove incomplete, owing to factors such as the high cost of

nnotation, the lack of knowledge, or ethical concerns regarding the
easurement of certain variables. More formally, concept bottlenecks

mplicitly assume that concepts are a sufficient statistic for the target
ariable (Yeh et al., 2020); in other words, 𝒙 ⟂⟂ 𝑦 | 𝒄. A situation
here 𝒙 ̸⟂⟂ 𝑦 | 𝒄 may occur when some ground-truth concept variables
re systematically missing in the acquired dataset, i.e. unobserved for
ll data points. Fig. 3 depicts two data-generating mechanisms that
ay lead to the scenario described above. When this is the case, the
redictive performance of the CBM is limited since the model solely
elies on the predefined set of concepts which is insufficient. To address
his limitation, we propose a semi-supervised variant of the MVCBM
Fig. 1) that additionally learns representations complementary to the
oncepts and relevant to the downstream prediction task.

Next to the feature extraction and concept prediction, SSMVCBM
ncludes an unsupervised module mapping views

{

𝒙𝑣𝑖
}𝑉𝑖
𝑣=1 to the repre-

entation �̂�𝑖 ∈ R𝐽 . To predict the label, �̂�𝑖 and �̂�𝑖 are concatenated and
ed into the target model. This variant of the model is semi-supervised
n that the label is predicted based on both �̂�𝑖 and �̂�𝑖, where �̂�𝑖 are
upervised by the concept prediction loss (Eq. (7)), while �̂�𝑖 are comple-
entary representations learnt without concept labels. Representations

̂ 𝑖 are meant to capture the residual relationship between 𝒙 and 𝒚 not
epresented among the observed concepts 𝒄. A forward pass of the
SMVCBM is given by

(i) Feature extraction:

𝒉𝒄,𝑣𝑖 = 𝒉𝝍𝒄
(

𝒙𝑣𝑖
)

, 1 ≤ 𝑣 ≤ 𝑉𝑖, (6a)
𝒉𝒛,𝑣𝑖 = 𝒉𝝍𝒛

(

𝒙𝑣𝑖
)

, 1 ≤ 𝑣 ≤ 𝑉𝑖,

(ii) Feature fusion:

�̄�𝒄𝑖 = 𝒓𝝃𝒄
(

{

𝒉𝒄,𝑣𝑖
}𝑉𝑖
𝑣=1

)

, (6b)

�̄�𝒛𝑖 = 𝒓𝝃𝒛
(

{

𝒉𝒛,𝑣𝑖
}𝑉𝑖
𝑣=1

)

,

iii) Concept and representation prediction:

�̂� = 𝒔 𝒄
(

�̄�𝒄
)

, (6c)
5

𝑖 𝜻 𝑖
�̂�𝑖 = 𝒔𝜻𝒛
(

�̄�𝒛𝑖
)

,

(iv) Label prediction:

�̂�𝑖 = 𝑓𝜽
([

�̂�𝑖, �̂�𝑖
])

, (6d)

where variables and parameters superscripted by 𝒄 and 𝒛 correspond
to the concept and representation learning modules, respectively.

To avoid learning a representation redundant to the concepts, it is
desirable that �̂� ⟂⟂ �̂� | 𝑦, i.e. the predicted concepts and unsupervised
representations should be statistically independent conditional on the
label. Concretely, we use another neural network 𝒂𝝉 ∶ R𝐽 → R𝐾 ,
parameterized by weights 𝝉, to quantify the degree of statistical de-
pendence as max𝝉 corr

(

𝒂𝝉 (�̂�) , �̂�
)

(Adeli et al., 2021). Thus, network 𝒂𝜏
is used to adversarially regularize representation �̂�. Empirically, we ob-
served that this regularization scheme helps de-correlate �̂� from concept
predictions and improves the model’s intervenability (Appendix F.2).
Additionally, note that, for the data-generating mechanisms shown in
Fig. 3, �̂� does not need to identify unobserved concepts 𝒄′ but rather
epresents the residual relationship between 𝒙 and 𝑦.

The procedure to train SSMVCBMs is outlined in Algorithm Ap-
endix D.1. Similar to the sequential optimization for (MV)CBMs as
n Eqs. (2) and (3), it consists of multiple steps. First, parameters
𝒄 =

{

𝝍𝒄 , 𝝃𝒄 , 𝜻𝒄
}

involved in concept prediction are optimized using
he loss function analogous to Eq. (2). Then, we fix �̂�𝒄 and optimize
arameters 𝝓𝒛 =

{

𝝍𝒛, 𝝃𝒛, 𝜻𝒛
}

by solving the following problem:

̂ 𝒛, �̃� =argmin
𝝓𝒛 ,𝜽

max
𝝉

𝑁
∑

𝑖=1
𝑤𝑡

𝑖
𝑡 (�̂�𝑖, 𝑦𝑖

)

−

𝜆
𝑁
∑

𝑖=1

𝐾
∑

𝑘=1
𝑤𝑐𝑘

𝑖 𝑐𝑘
([

𝑎𝝉
(

�̂�𝑖
)]

𝑘 , 𝑐𝑖,𝑘
)

,

(7)

here 𝜆 > 0 is a tuning parameter corresponding to the weight
f the adversarial regularizer. The loss function above can be ex-
ended with further regularization terms, e.g. to de-correlate individual
imensions of �̂� (Cogswell et al., 2016), facilitating a more straight-
orward interpretation. In practice, the minimax objective is optimized
sing adversarial training similarly to the generative adversarial net-
orks (Goodfellow et al., 2020). Last but not least, parameters of the

arget model are re-optimized, cf. Eq. (3), treating �̂�𝒄 and �̂�𝒛 as fixed:
̂ = argmin𝜽

∑𝑁
𝑖=1 𝑤

𝑡
𝑖

𝑡 (𝑓𝜽
([

�̂�𝒊, �̂�𝒊
])

, 𝑦𝑖
)

.

. Experiments and results

The purpose of our experiments was twofold: (i) to present a proof
f concept for the introduced extensions of the CBMs on simple bench-
arks and (ii) to apply our techniques to a real-world medical imag-

ng dataset. In the subsequent sections, we provide a more detailed
verview of the experimental setup.

.1. Experimental setup

atasets and validation scheme. To test the feasibility of the proposed
oncept-based multiview classification approaches, we conducted an
nitial experiment using a synthetic tabular nonlinear classification
roblem. The generative process of this dataset was defined directly
ased on the classical concept bottleneck model, involving (i) the sam-
ling of a design matrix, (ii) the mapping of features to concepts,
nd (iii) the use of these concepts to construct labels. In addition,
e constructed multiple ‘‘views’’, each comprising a subset of the
riginal feature set. This dataset is particularly suited to multiview
pproaches due to its inherent structure. Its essential advantage over
he conventional benchmarks from the literature, such as the UCSD
irds, is the presence of reliable per-data-point concept labels. Ad-
itional details can be found in Appendix B. This problem features
inary concepts that are identifiable from the given multiview observa-
ions. Although, herein, concept and target prediction are classification
roblems, all methods present are easily extendable to regression. In



Medical Image Analysis 91 (2024) 103042R. Marcinkevičs et al.
Table 2
Explanation and descriptive statistics for the concept variables chosen for the pediatric
appendicitis dataset. All concept variables are binary. The right-most column reports
the percentage of the positive outcome values.

Name Description Pos., %

𝑐1 Visibility of the
appendix

Visibility of the vermiform
appendix during the
examination

76

𝑐2 Free intraperitoneal
fluid

Free fluids in the abdomen 43

𝑐3 Appendix layer
structure

Characterization of the
appendix layers, e.g. irregular
in case of an increasing
inflammation

14

𝑐4 Target sign Axial image of the appendix
with the fluid-filled center
surrounded by echogenic
mucosa and submucosa and
hypoechoic muscularis

13

𝑐5 Surrounding tissue
reaction

Inflammation signs in tissue
surrounding the appendix

33

𝑐6 Pathological lymph
nodes

Enlarged and inflamed
intra-abdominal lymph nodes

21

𝑐7 Thickening of the
bowel wall

Edema of the intestinal wall,
>2–3 mm

8

𝑐8 Coprostasis Fecal impaction in the colon 6

𝑐9 Meteorism Accumulation of gas in the
intestine

15

our experiments, we assessed the models’ performance at (i) target,
(ii) concept prediction, and (iii) the effectiveness of interventions on
the predicted concepts. Additionally, to explore the scenario where the
set of concepts is incomplete, we purposefully trained the models on
concept subsets of varying sizes. We compared the performance of our
approach with that of single- and multiview black-box classifiers and
the vanilla concept bottlenecks (Koh et al., 2020). In addition to the
tabular data, we constructed a semi-synthetic attribute-based natural
image dataset based on the Animals with Attributes 2 (Lampert et al.,
2009; Xian et al., 2019) (Appendix C). The experimental results for this
benchmark are reported in Appendix F.1.

Last but not least, to demonstrate the effectiveness of our proposed
methods on real-world data, we employed ultrasound imaging and tab-
ular clinical, laboratory, and scoring data from pediatric patients with
suspected appendicitis. We explored three different target variables
encompassing the diagnosis, treatment assignment, and complications.
A comprehensive overview of this dataset is available in the previous
sections and in Appendix A. For model validation and comparison, we
divided the data according to the 90%-10% train-test split. Hyperpa-
rameter tuning was performed only on the training set using five-fold
cross-validation. The final hyperparameter values are reported in Table
Appendix E.2–Appendix E.6. The list of high-level concepts relevant to
decision support for pediatric appendicitis can be found in Table 2.
The selection criteria for these variables were the following: (i) the
concept had to be detectable from ultrasound images, as confirmed by
a qualified physician, and (ii) the variable had to had been collected
preoperatively.

Ablations. We compared several variations of the proposed multiview
concept bottlenecks to better understand the role of the design choices
made. Specifically, we trained models using sequential (MVCBM-seq)
and joint (MVCBM-joint) optimization procedures given by Eqs. (2)–
(4). We also compared the semi-supervised extension (SSMVCBM) de-
fined in Eq. (6) to the basic MVCBM. To facilitate meaningful compar-
ison, we purposefully trained models under insufficient concept sets to
observe if the SSMVCBM could achieve any performance improvement
over the MVCBM. Furthermore, we investigated the impact of two
fusion functions, namely, the arithmetic mean ((SS)MVCBM-avg) and
6

LSTM ((SS)MVCBM-LSTM). Lastly, similar to Koh et al. (2020), we
explored interventions on the concept bottlenecks by replacing the
predicted concept values with the ground truth at test time. The goal
was to investigate whether a practitioner utilizing a concept-based
model could improve its predictions interactively.

Baselines. We benchmarked the performance of the (SS)MVCBMs
against several baselines. Across all datasets, we applied single-view
neural-network-based classifiers. Specifically, we trained MLPs for tab-
ular data and fine-tuned ResNet-18 (He et al., 2016) on images. As
an interpretable single-view baseline, we employed vanilla CBMs.
To ensure a fair comparison between CBMs and (SS)MVCBMs, we
utilized identical architectures for individual modules. As a black-
box multiview baseline, we employed a neural network with the
same architecture as for the MVCBM but trained without concept
supervision in the bottleneck layer, which we refer to as multiview
bottleneck (MVBM). Similarly, as for its interpretable counterpart, we
compared two ways of aggregating per-view representations: averaging
and LSTM. Lastly, specific to the pediatric appendicitis dataset, in
addition to deep-learning- and concept-based approaches, we also
investigated an alternative baseline predictive model: a random forest
(RF) (Breiman, 2001) fitted on radiomic features (van Griethuysen
et al., 2017). The features were extracted from every image and
averaged across the views for each subject.

Evaluation. Since the intended use case of our models in healthcare
applications is decision support rather than decision-making, we mainly
focused on evaluating the performance of concept and label predic-
tions using areas under receiver operating characteristic (AUROC) and
precision–recall (AUPR) curves. Notably, for pediatric appendicitis,
different metrics may be relevant depending on the target variable,
e.g. a low false negative rate may be critical for diagnosis and severity,
while a low false positive rate may be desirable for management to
avert negative appendectomies (Kryzauskas et al., 2016). Furthermore,
for appendicitis, we also assessed the predictions’ calibration using the
Brier score.

Implementation details. We implemented MVCBM and SSMVCBM in Py-
Torch (v 1.11.0) (Paszke et al., 2019). Across all experiments and mod-
els, when applicable, we fine-tuned pretrained ResNet-18
(He et al., 2016) as the shared view encoder. For the concept encoder
and target model, we utilized MLPs with ReLU hidden activations.
Detailed architecture specifications are provided in Appendix E.

We used the PyRadiomics package (van Griethuysen et al., 2017) for
radiomic feature extraction. Features were extracted from the whole
images without prior segmentation of the region of interest since
segmentation is beyond the scope of the current work. We computed
first-order statistics, gray level size zone and gray level run length
matrix features from the original and square-filtered images. Random
forests were trained with a cost-sensitive loss function to account
for class imbalance. ANOVA 𝐹 -value-based feature selection was per-
formed using nested cross-validation to improve the performance of
this baseline further. The remainder of the implementation details can
be found in Appendix E and within the publicly available code and
documentation.

3.2. Proof of concept on synthetic data

The first benchmark we considered was tabular synthetic nonlinear
data. Fig. 4 contains the summary of the results. As expected, black-box
and concept-based multiview approaches are consistently more accu-
rate than their single-view counterparts at target (Fig. 4(a)) and concept
prediction (Fig. 4(b)). Namely, a multiview bottleneck model with-
out concept supervision (MVBM) performs considerably better than a
multilayer perceptron trained on a single view (MLP) (paired 𝑡-test
𝑝-value < 0.0001 for target AUROC); similarly, a multiview concept

bottleneck (MVCBM) outperforms a simple CBM (for all numbers of
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Fig. 4. Target and concept prediction results on synthetic data for the proposed multiview concept bottleneck (MVCBM) and semi-supervised multiview concept bottleneck
(SSMVCBM) models alongside several baselines. All plots were produced across ten independent simulations. (a) One-vs-all AUROCs for predicting the target on the test data under
the varying number of observed concepts. MLP and MVBM do not rely on concepts; their AUROCs are shown as horizontal lines for reference. (b) AUROCs for predicting concepts
on the test data under the varying number of observed concepts. AUROCs were averaged across the observed concepts. (c) AUROCs for predicting the target on the test data after
intervening on the varying number of concepts. The intervention experiment was performed for 5/30 observed concepts, i.e. under an incomplete concept set. The performances of
non-intervenable MLP and MVBM baselines are shown as horizontal lines. Confidence bands correspond to interquartile ranges across independent simulations and several randomly
sampled concept subsets.
concepts given, 𝑝-value < 0.05 for target and concept AUROC). Notably,
the target prediction accuracy for CBM and MVCBM increases with
the number of concepts given, as shown in Fig. 4(a). When almost a
complete concept set is provided, the performance of the multiview
CBM becomes closer to that of the multiview black-box classifier. The
semi-supervised MVCBM (SSMVCBM) performs well even when very
few concepts are known and is close to the black-box baseline in most
settings (for at least 5/30 concepts given, 𝑝-value > 0.05 for target
AUROC).

For the concept prediction, MVCBM and SSMVCBM attain compa-
rable performance with higher AUROCs than the single-view model
(Fig. 4(b)). As expected, the semi-supervised model predicts the con-
cepts equally well compared to the MVCBM (for all numbers of concepts
given, 𝑝-value > 0.05 for concept AUROC); thus, representation learn-
ing has no effect on the concept prediction. Lastly, we observe from
Fig. 4(c) that similarly to the classical CBM, both multiview variants are
intervenable, i.e. their predictive performance improves when replacing
predicted concepts with the ground truth at test time.

In addition to the results above, Appendix F.1 describes experiments
on a semi-synthetic attribute-based natural image dataset. In brief, we
observed similar results to the ones reported in Fig. 4. In Appendix F.2,
we explore the SSMVCBM in more detail, performing an ablation study
on the effect of adversarial regularization.

3.3. Application to pediatric appendicitis

Our multiview concept bottleneck models are readily applicable to
medical imaging datasets, which, in practice, often include multiple
views and heterogeneous data types. In the following, we explore the
application of the multiview CBMs to the pediatric appendicitis dataset.

Predicting high-level ultrasound features. We first evaluated the ability
of all concept-based models to predict high-level appendix ultrasound
features (Table 2) from (multiple) abdominal US images. Table 3 con-
tains test-set AUROCs and AUPRs achieved by the different variants
of the concept bottleneck. In addition to comparing vanilla CBMs to
their multiview and semi-supervised extensions, we investigated the
effect of the optimization procedure, sequential vs. joint, and view-
specific feature fusion, averaging vs. long short-term memory (LSTM).
The models included in Table 3 were trained to predict the diag-
nosis (appendicitis vs. no appendicitis); however, we observed similar
results for the management and severity, as shown in Tables 4–5.
Minor discrepancies across the three classification problems are at-
tributable to the differences in the weights assigned to data points in
the cost-sensitive loss function (Eqs. (2)–(4) and (7)) and the choice of
hyperparameter values (Table Appendix E.2–Appendix E.6).

Across all target variables, most concepts could be predicted by
at least one of the models significantly better than by a fair coin
7

flip (one-sample two-sided 𝑡-test 𝑝-value < 0.05, adjusted using the
Benjamini–Yekutieli procedure with the FDR of 𝑞 = 0.05). Surpris-
ingly, some of the variables with relatively few cases present in the
dataset could be captured by some models, e.g. coprostasis (𝑐8) and
meteorism (𝑐9) by the LSTM-based variants of MVCBM and SSMVCBM.
On the other hand, the thickening of the bowel wall (𝑐7) was particularly
challenging to model, likely due to its low prevalence and the lack of
predictive power in the downstream classification task: some models
trained with the severity as the target were able to perform significantly
better than random, as shown in Table 5.

Note that, in a few cases, some models achieved average AUROCs
below the expected performance of a fair coin flip (Table 3), e.g. both
sequentially and jointly optimized CBMs attained an AUROC close to
0.40 for predicting meteorism. Such performance is attributable to the
sparsity of some concept variables; for instance, only 15% of subjects
had a positive label for meteorism (Table 2). Another factor is the use of
weighted loss functions for the concept and target prediction (Eqs. (2)–
(4) and (7)). Consequently, the models may over-predict the minority
class and perform worse than a fair coin flip.

Predictably, sequentially optimized models (seq) were more perfor-
mant at the concept prediction than the ones optimized jointly (joint),
in agreement with the findings reported in the literature (Koh et al.,
2020). Similar to the experiments on the synthetic data shown in
Fig. 4(b), the models aggregating multiple views tended to have higher
AUROCs and AUPRs. However, by contrast, LSTM-based aggregation
consistently and noticeably outperformed simple averaging (avg), es-
pecially for predicting the visibility of the appendix—one of the most
important diagnostic concepts (Marcinkevics et al., 2021). This could
be associated with the loose spatiotemporal ordering among the US
images acquired for each subject. Last but not least, semi-supervised
bottlenecks were comparable to the sequentially optimized MVCBMs.
Thus, learning complementary representations disentangled from the
concepts did not hurt the model’s performance at concept prediction.

In addition to the discriminative power, we assessed the calibration
of the concept predictions. The test-set Brier scores across the three tar-
gets are reported in Appendix F.5, Table Appendix F.4. Overall, similar
to the findings above, multiview models attained lower Brier scores for
most concept variables than the single-view CBMs. The cases wherein
single-view CBMs performed better than their multiview counterparts
may be attributed to the imbalances in concept distributions and the
fact that the Brier score does not adjust for such situations. For instance,
for very sparse response variables, a classifier trivially predicting the
most frequent category would achieve a relatively low Brier score.
Although many models predicted several concepts significantly better
than the constant prediction of 0.5, their Brier scores were mainly in
the range of 0.18-0.23, which is not considerably below the baseline of
0.25.
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Table 3
Models’ test-set performance at concept prediction on the pediatric appendicitis dataset with the diagnosis as the target variable. Test-set AUROCs and AUPRs are reported as
averages and standard deviations across ten independent initializations. Herein, ‘‘seq’’ and ‘‘joint’’ denote sequential and joint optimization, respectively, whereas ‘‘avg’’ and ‘‘LSTM’’
stand for the averaging- and LSTM-based fusion. Bold indicates the best result; italics indicates the second best. The meaning of the concept variables: 𝑐1, visibility of the appendix;
𝑐2, free intraperitoneal fluid; 𝑐3, appendix layer structure; 𝑐4, target sign; 𝑐5, surrounding tissue reaction; 𝑐6, pathological lymph nodes; 𝑐7, thickening of the bowel wall; 𝑐8,
oprostasis; 𝑐9, meteorism.
Metric Model Concept

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9

AUROC

Random 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

CBM-seq 0.52±0.04 0.47±0.04 0.60±0.07* 0.56±0.08 0.63±0.05* 0.57±0.05* 0.45±0.08 0.48±0.08 0.39±0.07
CBM-joint 0.50±0.05 0.47±0.03 0.57±0.05* 0.54±0.06 0.64±0.04* 0.59±0.05* 0.39±0.06 0.57±0.12 0.38±0.09

MVCBM-seq-avg 0.61±0.05* 0.49±0.05 0.66±0.08* 0.60±0.08* 0.51±0.08 0.66±0.08* 0.50±0.04 0.47±0.12 0.55±0.07
MVCBM-seq-LSTM 0.83±0.03* 0.59±0.03* 0.62±0.04* 0.71±0.04* 0.65±0.04* 0.67±0.07* 0.49±0.07 0.68±0.10* 0.73±0.06*
MVCBM-joint-avg 0.55±0.10 0.47±0.07 0.73±0.07* 0.63±0.07* 0.61±0.06* 0.63±0.07* 0.48±0.06 0.45±0.13 0.54±0.11
MVCBM-joint-LSTM 0.85±0.03* 0.55±0.04* 0.58±0.04* 0.70±0.03* 0.75±0.02* 0.55±0.09 0.45±0.12 0.68±0.17 0.77±0.03*

SSMVCBM-avg 0.62±0.05* 0.60±0.05* 0.72±0.05* 0.67±0.05* 0.54±0.05 0.68±0.08* 0.53±0.11 0.43±0.08 0.47±0.07
SSMVCBM-LSTM 0.85±0.04* 0.58±0.06* 0.66±0.05* 0.71±0.06* 0.67±0.04* 0.69±0.06* 0.45±0.09 0.66±0.11* 0.73±0.05*

AUPR

Random 0.72 0.49 0.19 0.23 0.51 0.26 0.16 0.13 0.14

CBM-seq 0.71±0.03 0.53±0.03* 0.29±0.06* 0.26±0.05 0.64±0.05* 0.38±0.06* 0.15±0.03 0.12±0.02 0.11±0.02
CBM-joint 0.73±0.05 0.49±0.04 0.30±0.06* 0.30±0.08 0.64±0.05* 0.38±0.09* 0.15±0.05 0.19±0.08 0.11±0.02

MVCBM-seq-avg 0.79±0.04* 0.53±0.06 0.34±0.10* 0.35±0.10* 0.53±0.07 0.41±0.07* 0.17±0.04 0.14±0.04 0.25±0.12
MVCBM-seq-LSTM 0.92±0.02* 0.59±0.04* 0.32±0.05 0.38±0.04* 0.67±0.04* 0.42±0.10* 0.15±0.02 0.21±0.08 0.40±0.11*
MVCBM-joint-avg 0.75±0.08 0.48±0.06 0.38±0.09* 0.30±0.06 0.58±0.05* 0.39±0.08* 0.21±0.08 0.15±0.08 0.16±0.05
MVCBM-joint-LSTM 0.94±0.01* 0.50±0.05 0.26±0.08 0.37±0.07* 0.74±0.04* 0.32±0.09 0.16±0.08 0.31±0.20 0.28±0.07*

SSMVCBM-avg 0.79±0.04* 0.58±0.03* 0.38±0.05* 0.34±0.04* 0.54±0.06 0.42±0.08* 0.20±0.06 0.12±0.04 0.17±0.07
SSMVCBM-LSTM 0.93±0.03* 0.60±0.06* 0.31±0.06* 0.38±0.06* 0.67±0.04* 0.39±0.06* 0.19±0.06 0.19±0.07 0.30±0.09*

* AUROCs and AUPRs that are significantly greater than the expected performance of a fair coin flip (random).
Table 4
Models’ test-set performance at concept prediction on the appendicitis dataset with the management as the target variable. Test-set AUROCs and AUPRs are reported as averages
and standard deviations across ten independent initializations. Herein, ‘‘seq’’ and ‘‘joint’’ denote sequential and joint optimization, respectively, whereas ‘‘avg’’ and ‘‘LSTM’’ stand
for the averaging- and LSTM-based fusion. Bold indicates the best result; italics indicates the second best. The meaning of the concept variables: 𝑐1, visibility of the appendix; 𝑐2,
ree intraperitoneal fluid; 𝑐3, appendix layer structure; 𝑐4, target sign; 𝑐5, surrounding tissue reaction; 𝑐6, pathological lymph nodes; 𝑐7, thickening of the bowel wall; 𝑐8, coprostasis;
9, meteorism.
Metric Model Concept

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9

AUROC

Random 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

CBM-seq 0.51±0.05 0.54±0.07 0.63±0.05* 0.49±0.07 0.65±0.07* 0.56±0.06 0.47±0.10 0.60±0.10 0.54±0.07
CBM-joint 0.54±0.08 0.51±0.08 0.64±0.06* 0.49±0.06 0.67±0.03* 0.54±0.07 0.49±0.07 0.56±0.10 0.47±0.09

MVCBM-seq-avg 0.62±0.06* 0.48±0.07 0.69±0.03* 0.54±0.12 0.49±0.08 0.60±0.07* 0.48±0.09 0.47±0.13 0.57±0.09
MVCBM-seq-LSTM 0.86±0.05* 0.55±0.05 0.62±0.05* 0.69±0.03* 0.66±0.04* 0.65±0.06* 0.50±0.07 0.75±0.09* 0.74±0.06*
MVCBM-joint-avg 0.52±0.07 0.53±0.06 0.71±0.07* 0.59±0.05* 0.64±0.07* 0.65±0.04* 0.48±0.10 0.54±0.07 0.52±0.15
MVCBM-joint-LSTM 0.80±0.05* 0.41±0.08 0.66±0.07* 0.61±0.04* 0.66±0.03* 0.62±0.07* 0.51±0.07 0.62±0.11 0.63±0.08*

SSMVCBM-avg 0.62±0.07* 0.57±0.08 0.73±0.04* 0.63±0.05* 0.55±0.04 0.65±0.07* 0.50±0.08 0.49±0.08 0.52±0.05
SSMVCBM-LSTM 0.84±0.02* 0.54±0.05 0.70±0.05* 0.70±0.03* 0.68±0.05* 0.62±0.07* 0.50±0.10 0.72±0.05* 0.72±0.10*

AUPR

Random 0.72 0.49 0.19 0.23 0.51 0.26 0.16 0.13 0.14

CBM-seq 0.76±0.03 0.55±0.07 0.37±0.09* 0.23±0.03 0.66±0.07* 0.35±0.10 0.19±0.06 0.20±0.13 0.17±0.03
CBM-joint 0.77±0.04* 0.51±0.06 0.45±0.08* 0.24±0.07 0.64±0.04* 0.29±0.04 0.19±0.05 0.17±0.09 0.15±0.06

MVCBM-seq-avg 0.79±0.04* 0.52±0.08 0.35±0.04* 0.31±0.14 0.51±0.06 0.37±0.08* 0.17±0.04 0.12±0.04 0.18±0.05
MVCBM-seq-LSTM 0.95±0.02* 0.55±0.03* 0.32±0.08* 0.38±0.04* 0.66±0.03* 0.38±0.09* 0.16±0.02 0.30±0.16 0.30±0.06*
MVCBM-joint-avg 0.71±0.04 0.53±0.05 0.36±0.10* 0.28±0.03* 0.60±0.07* 0.39±0.06* 0.17±0.05 0.20±0.07 0.21±0.10
MVCBM-joint-LSTM 0.91±0.03* 0.44±0.05 0.31±0.06* 0.33±0.06* 0.64±0.03* 0.38±0.06* 0.19±0.04 0.19±0.11 0.28±0.14

SSMVCBM-avg 0.78±0.06 0.60±0.07* 0.41±0.08* 0.33±0.08* 0.55±0.05 0.39±0.07* 0.22±0.06 0.12±0.02 0.23±0.08
SSMVCBM-LSTM 0.93±0.01* 0.55±0.06 0.38±0.09* 0.37±0.06* 0.67±0.06* 0.35±0.06* 0.17±0.05 0.24±0.05* 0.27±0.08*

* AUROCs and AUPRs that are significantly greater than the expected performance of a fair coin flip (random).
Predicting diagnosis, management, and severity. As mentioned, the end
goal of the developed models was the prediction of the (i) diagnosis,
(ii) management, and (iii) severity among suspected appendicitis pa-
tients based on the multiview US images. Test-set performance for these
three target variables is reported in Table 6.

With respect to AUROC and AUPR, all models were able to pre-
dict all target variables better than the naive baseline. Among the
concept-based approaches, multiview models offered a consistent im-
provement over the vanilla CBM for diagnosis and severity. Moreover,
8

the best-performing concept-based classifiers often achieved AUROCs
and AUPRs comparable to those of the black-box MVBM. For the
diagnosis, on average, multiview concept bottlenecks with the LSTM-
based fusion outperformed averaging-based approaches. However, for
management, the opposite was true. Expectedly, while the LSTM-based
fusion was helpful in the pediatric appendicitis dataset where US
images are chronologically ordered, at test time, the target prediction
performance of the LSTM-based CBMs was sensitive to the order of
input images, as observed in the supplementary experimental results in
Appendix F.3. For the diagnosis and management prediction, we also
observed that neural-network-based methods, overall, outperformed
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Table 5
Models’ test-set performance at concept prediction on the appendicitis dataset with the severity as the target variable. Test-set AUROCs and AUPRs are reported as averages and
standard deviations across ten independent initializations. Herein, ‘‘seq’’ and ‘‘joint’’ denote sequential and joint optimization, respectively, whereas ‘‘avg’’ and ‘‘LSTM’’ stand for
the averaging- and LSTM-based fusion. Bold indicates the best result; italics indicates the second best. The meaning of the concept variables: 𝑐1, visibility of the appendix; 𝑐2, free
ntraperitoneal fluid; 𝑐3, appendix layer structure; 𝑐4, target sign; 𝑐5, surrounding tissue reaction; 𝑐6, pathological lymph nodes; 𝑐7, thickening of the bowel wall; 𝑐8, coprostasis; 𝑐9,
eteorism.
Metric Model Concept

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9

AUROC

Random 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

CBM-seq 0.51±0.04 0.58±0.06* 0.61±0.08* 0.52±0.09 0.62±0.04* 0.62±0.05* 0.47±0.09 0.57±0.11 0.50±0.08
CBM-joint 0.55±0.06 0.46±0.06 0.66±0.06* 0.47±0.06 0.64±0.04* 0.53±0.07 0.50±0.07 0.58±0.10* 0.49±0.04

MVCBM-seq-avg 0.54±0.08 0.55±0.04 0.72±0.07* 0.62±0.04* 0.50±0.05 0.64±0.06* 0.51±0.10 0.47±0.11 0.54±0.10
MVCBM-seq-LSTM 0.82±0.04* 0.53±0.04 0.62±0.04* 0.69±0.04* 0.62±0.05* 0.72±0.05* 0.64±0.06* 0.78±0.03* 0.70±0.06*
MVCBM-joint-avg 0.54±0.09 0.51±0.06 0.70±0.06* 0.59±0.08* 0.61±0.06* 0.62±0.05* 0.54±0.15 0.48±0.14 0.55±0.12
MVCBM-joint-LSTM 0.82±0.03* 0.48±0.06 0.66±0.07* 0.64±0.06* 0.65±0.05* 0.64±0.09* 0.47±0.09 0.61±0.14 0.65±0.05*

SSMVCBM-avg 0.53±0.06* 0.56±0.08* 0.71±0.05* 0.60±0.06* 0.51±0.05 0.64±0.09* 0.46±0.08 0.48±0.09 0.53±0.03
SSMVCBM-LSTM 0.77±0.10* 0.59±0.08 0.70±0.06* 0.67±0.07* 0.65±0.07* 0.67±0.05* 0.62±0.08* 0.74±0.15* 0.64±0.11*

AUPR

Random 0.72 0.49 0.19 0.23 0.51 0.26 0.16 0.13 0.14

CBM-seq 0.75±0.03 0.58±0.05* 0.34±0.09* 0.24±0.05 0.64±0.04* 0.35±0.06* 0.18±0.05 0.19±0.07 0.15±0.03
CBM-joint 0.77±0.05 0.47±0.04 0.37±0.09* 0.25±0.06 0.64±0.05* 0.30±0.07 0.17±0.04 0.18±0.06 0.18±0.08

MVCBM-seq-avg 0.75±0.05 0.58±0.06* 0.42±0.07* 0.33±0.06* 0.53±0.05 0.41±0.08* 0.21±0.05 0.13±0.05 0.24±0.12
MVCBM-seq-LSTM 0.91±0.04* 0.55±0.04* 0.33±0.08* 0.40±0.06* 0.65±0.03* 0.50±0.11* 0.23±0.05* 0.27±0.05* 0.26±0.07*
MVCBM-joint-avg 0.74±0.06 0.51±0.07 0.42±0.09* 0.28±0.07 0.59±0.06* 0.35±0.05* 0.22±0.06 0.22±0.13 0.21±0.08
MVCBM-joint-LSTM 0.92±0.02* 0.49±0.05 0.37±0.11* 0.32±0.07* 0.65±0.06* 0.39±0.07* 0.20±0.06 0.17±0.07 0.21±0.06*

SSMVCBM-avg 0.73±0.05 0.58±0.07* 0.36±0.05* 0.28±0.04* 0.53±0.05 0.37±0.09* 0.20±0.06 0.13±0.02 0.24±0.06*
SSMVCBM-LSTM 0.88±0.06* 0.60±0.06* 0.42±0.06* 0.39±0.09* 0.67±0.07* 0.43±0.10* 0.24±0.08 0.30±0.13* 0.20±0.05*

* AUROCs and AUPRs that are significantly greater than the expected performance of a fair coin flip (random).
Table 6
Models’ test-set performance at predicting diagnosis, management, and severity. Test-set AUROCs, AUPRs, and Brier scores are reported as averages and standard deviations across
ten independent initializations. Bold indicates the best result; italics indicates the second best.

Model Diagnosis Management Severity

AUROC AUPR Brier AUROC AUPR Brier AUROC AUPR Brier

Random 0.50 0.75 0.25 0.50 0.47 0.25 0.50 0.23 0.25
Radiomics + RF 0.64±0.02 0.82±0.01 0.22±0.00 0.65±0.01 0.60±0.02 0.24±0.00 0.77±0.02 0.58±0.04 0.15±0.00
ResNet-18 0.70±0.07 0.88±0.04 0.25±0.08 0.69±0.07 0.71±0.08 0.27±0.05 0.73±0.10 0.52±0.10 0.18±0.04

CBM-seq 0.64±0.06 0.84±0.04 0.22±0.02 0.68±0.05 0.68±0.05 0.23±0.02 0.66±0.06 0.41±0.08 0.23±0.04
CBM-joint 0.62±0.04 0.83±0.04 0.24±0.02 0.66±0.06 0.68±0.04 0.23±0.02 0.68±0.06 0.44±0.08 0.23±0.02

MVBM-avg 0.76±0.05 0.89±0.04 0.22±0.03 0.71±0.04 0.69±0.04 0.24±0.02 0.71±0.12 0.59±0.11 0.20±0.05
MVBM-LSTM 0.76±0.04 0.91±0.02 0.23±0.02 0.67±0.04 0.61±0.04 0.23±0.02 0.74±0.13 0.58±0.12 0.22±0.07

MVCBM-seq-avg 0.67±0.05 0.85±0.05 0.23±0.02 0.58±0.05 0.62±0.06 0.26±0.02 0.75±0.07 0.56±0.12 0.23±0.04
MVCBM-seq-LSTM 0.73±0.03 0.89±0.01 0.24±0.04 0.57±0.03 0.53±0.04 0.26±0.01 0.70±0.11 0.48±0.16 0.21±0.03
MVCBM-joint-avg 0.66±0.09 0.84±0.06 0.24±0.06 0.69±0.06 0.66±0.11 0.23±0.02 0.70±0.06 0.53±0.11 0.24±0.02
MVCBM-joint-LSTM 0.72±0.02 0.88±0.02 0.22±0.01 0.57±0.05 0.50±0.04 0.26±0.01 0.65±0.07 0.37±0.10 0.24±0.02

SSMVCBM-avg 0.80±0.03 0.92±0.02 0.20±0.03 0.72±0.05 0.72±0.04 0.27±0.05 0.73±0.07 0.57±0.09 0.17±0.02
SSMVCBM-LSTM 0.80±0.06 0.92±0.04 0.19±0.04 0.70±0.03 0.67±0.06 0.27±0.04 0.78±0.05 0.58±0.10 0.21±0.10
RFs fitted on radiomics features. The latter result is not surprising,
given that we did not utilize manually segmented regions of interest
for radiomics feature extraction. Lastly, across all targets, the semi-
supervised extension of the MVCBM achieved higher AUROCs and
AUPRs or was comparable to the approaches that purely relied on the
concepts.

Brier score results partially agree with AUROCs and AUPRs; how-
ever, they feature less variability across model classes. For all target
variables, most scores are ≥ 0.20. Combined with the reported AUROCs
nd AUPRs, the latter finding indicates that the probabilistic predic-
ions of the models considered could benefit from calibration, which
ould help produce more interpretable probabilistic outputs.

Along with the model comparison w.r.t. AUROCs, AUPRs, and Brier
cores, we investigated the tradeoff between true positive (TPR) and
alse positive (FPR) rates in more detail for predicting the diagnosis.
ull results are reported in Table Appendix F.3 (Appendix F.4). In
articular, we assessed the models’ FPRs for a few fixed satisfactory
evels of the TPR. As expected, we observed that, for all approaches,
ttaining high TPRs led to relatively high FPRs of > 30%.
9

In summary, concept-based classification on multiview US data
is encouragingly effective at predicting the diagnosis. For manage-
ment, aggregating multiple US images offers no improvement over
simple single-view classification. We attribute this to the diagnostic
nature of the chosen concepts and their limited predictive power for
the treatment assignment. Likewise, accurately predicting appendicitis
severity is challenging, likely, due to the low prevalence of complicated
appendicitis cases in the current dataset. Last but not least, in all
tasks, the proposed SSMVCBM mitigated the poorer discriminative
performance of concept-based approaches by learning representations
complementary to the probably incomplete concept set.

Interacting with the model. The practical utility of CBMs lies in the
ability of the human user, in the current use case, the physician, to
intervene on the concepts predicted by the model, thus affecting the
model’s behavior at test time. Similarly to the proof-of-concept experi-
ments, we intervened on the bottleneck layers of the CBM, MVCBM, and
SSMVCBM trained on the pediatric appendicitis data. Fig. 5 summarizes
these results. Since LSTM-based and sequentially trained classifiers
generally captured the concepts better (Table 3), we only considered
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Fig. 5. Intervention experiment results for the pediatric appendicitis dataset. Interventions were performed by replacing the concept values predicted by the concept-based models
ith the ground truth for the (a,d) diagnosis, (b,e) management, and (c,f) severity as target variables. Lines correspond to median (a–c) test-set AUROCs and (d–f) AUPRs attained
y intervened models across ten initializations and three randomly sampled concept subsets. The performances of non-intervenable ResNet-18 and MVBM baselines are shown as
orizontal lines.
his specific configuration. Fig. 5 shows the effect of interventions on
he three models for the diagnosis (Fig. 5(a) and (d)), management
Fig. 5(b) and (e)), and severity (Fig. 5(c) and (f)). The lines show
hanges in AUROCs and AUPRs when intervening on randomly chosen
oncept subsets of varying sizes.

For the diagnosis, the intervention effect is similar to the behavior
f the models on the synthetic data shown in Fig. 4(c). Namely, AUROC
nd AUPR increase steadily with the number of concepts intervened on:
or all models, the maximum median AUROC and AUPR achieved are
pprox. 0.85 and 0.94, respectively. Being the best-performing model
Table 6), SSMVCBM demonstrates only a slight increase in median
redictive performance after intervening on the full concept set.

Similarly, for management, we observed an increase in AUROC and
UPR. However, for predicting this target, a single-view CBM per-

ormed surprisingly well and overtook multiview models after interven-
ions. Last but not least, interventions yielded no visible performance
mprovement for severity, possibly, due to considerable variance across
nitializations and randomly sampled concept subsets.

.4. Online prediction tool

As a first step towards enabling clinicians and other interested
arties to benefit from ML-based decision support, we developed and
ublished an online decision support tool based on the abovementioned
ethods, available at https://papt.inf.ethz.ch/mvcbm. The use case is

llustrated in Fig. 6. The tool utilizes the multiview CBM model (Fig. 1)
or predicting the diagnosis in suspected appendicitis patients. The
ser may upload several ultrasonography images, each representing a
ifferent view of the same patient. Image preprocessing, described in
he Methods section and demonstrated in Fig. 2, may be optionally exe-
uted. In addition to predicting the diagnosis, the tool allows the user to
ntervene on the concept predictions ( Table 2) by setting corresponding
igmoid activations to 0 (negative) or 1 (positive). Uploaded images are
rotected using server-side sessions, which are only temporarily stored
n the server and are purged after 30 min. See Appendix G for more
nformation.
10
4. Discussion

Most of the prior work on using ML for appendicitis has focused on
tabular datasets with handcrafted features (Hsieh et al., 2011; Deleger
et al., 2013; Reismann et al., 2019; Aydin et al., 2020; Akmese et al.,
2020; Stiel et al., 2020; Marcinkevics et al., 2021; Roig Aparicio et al.,
2021; Xia et al., 2022) or more invasive imaging modalities, such as
computed tomography (Rajpurkar et al., 2020). This work takes the
first step towards the computer-aided diagnosis of appendicitis based
on abdominal ultrasound, a noninvasive, accessible, and cheap tech-
nique. Moreover, to facilitate the replication of our results and allow
for comparison with new methods, we made our anonymized dataset
publicly accessible. It includes laboratory, physical exam, clinical, and
US data from 579 patients. In addition, for demonstratory purposes,
we deployed the MVCBM model for the diagnosis as an easy- and
free-to-use web tool.

Although appendicitis is a common condition in the pediatric pop-
ulation, diagnosing it and choosing the best therapeutic option is
challenging. Early differentiation between simple and complicated,
necrotizing appendicitis is crucial for effective management and prog-
nosis (Reddan et al., 2016; Reismann et al., 2019; Kiss et al., 2021). The
advances in US resolution, especially with the high-frequency sonogra-
phy, support the detection of a normal appendix and the identification
of indirect appendicitis signs, such as surrounding tissue inflammation
and the reaction of the intestinal bowel wall (Park et al., 2011). ML-
based decision support tools may further increase diagnostic accuracy
and prove pivotal in improving treatment outcomes. The results of the
current study are promising, as they suggest that direct interpretation
of US images by ML models is a feasible goal. Predictive models, such as
the ones developed in this study, may assist physicians in interpreting
acquired US images and may even enable comparison of the results
with the newly conducted US exams to characterize the progress or
resolution of the inflammation.

Moreover, this work presents an improvement upon traditional
concept bottleneck models (Koh et al., 2020), making them more
readily applicable to medical imaging datasets where multiple images

https://papt.inf.ethz.ch/mvcbm
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Fig. 6. An illustrated use case for the pediatric appendicitis online prediction tool. (1) The user uploads input ultrasound images corresponding to a single patient. (2) Optionally,
preprocessing is performed, and the tool displays original and preprocessed US images. (3) The tool displays predicted concept values, given by sigmoid activations from the
corresponding units in the concept bottleneck layer, alongside predicted value histograms obtained from the training data (plotted separately for appendicitis and non-appendicitis
cases in red and blue, respectively). The user can compare current concept predictions to those made for labeled training data points. (4) The tool shows the prediction for the
target variable, i.e. for the diagnosis, given by the sigmoid activation. (5) The user may choose to intervene on the concept predictions and, thus, affect the target prediction. For
example, if the user was trained in interpreting ultrasound images, they may correct wrongly predicted concepts by setting corresponding variables to 0 (negative) or 1 (positive).
In this example, concept predictions that were intervened on (chosen arbitrarily for demonstration) are indicated by yellow dotted lines.
or modalities may be observable for each subject. In order to accom-
plish this, we proposed a practical architecture based on the hybrid
fusion approach (Baltrušaitis et al., 2019), which can effectively handle
varying numbers of views per data point, partial observability of the
concepts from individual images, and the incorporation of spatial or
temporal ordering. While prior research has explored the use of averag-
ing and LSTM techniques for aggregating representations (Havaei et al.,
2016; Ma et al., 2019), our focus is specifically on interpretable models,
particularly those involving concept-based classification. To the best of
our knowledge, this problem setting has not been previously discussed
in the literature despite its relevance to biomedical applications (Wang
et al., 2020; Qian et al., 2021).

Another scenario that we studied, similarly pertinent to applica-
tions, is when the concept set given to a CBM is insufficient (Yeh et al.,
2020), i.e. does not entirely capture the predictive relationship between
the covariates and the target. To address this issue and improve the
CBM’s predictive performance, our model learns additional represen-
tations complementary to the concepts, i.e. de-correlated from the
concepts yet helpful in the downstream prediction problem. To achieve
this objective, we modified the model’s architecture, incorporated an
adversarial regularization term into the loss function, and adapted the
training procedure accordingly.

A few previous works have investigated related limitations of the
CBMs when the concept set provided to the CBM proves insufficient,
and have explored alternative model designs. For instance, Sawada and
Nakamura (2022) combined CBMs with self-explaining neural networks
to learn additional unsupervised concepts; however, they did not in-
vestigate the disentanglement of the given and learned concepts or the
intervenability of their extended bottleneck layer. Yuksekgonul et al.
(2022) proposed fitting a concept bottleneck post hoc for a pretrained
backbone and utilized residual fitting to compensate for an incomplete
concept set. Moreover, they investigated the global model edition,
e.g. to mitigate the classifier’s reliance on spurious correlation. In
contrast, our work assumes an ante hoc modeling scenario and focuses
on the local, i.e. single-data-point, interventions. Another related line of
research also studied the problem of unobserved concepts and concept
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leakage (Marconato et al., 2022), employing generative representation
learning, which may be challenging to apply to smaller datasets in
practice. The most closely related is the concurrent work by Havasi
et al. (2022), who extended the standard CBM architecture with a
side channel to learn latent concepts and compensate for insufficiency.
While their method is similar to ours, it does not address multiview
learning or consider medical imaging data.

In our experiments, we have demonstrated the feasibility of the
proposed models and the benefits of the multiview and semi-supervised
concept-based approach on synthetic and medical image data. Our
findings have shown that the MVCBM and SSMVCBM models have
generally outperformed vanilla CBM in terms of both concept and
target prediction. Moreover, based on the US data, we have developed
predictive models for appendicitis, its severity and the management
of pediatric patients with abdominal pain (Tables 3–6). Our results
suggest that, for the diagnosis, multiview concept bottlenecks can
achieve comparable performance to black-box models while allowing
medical practitioners to interpret and intervene on the predictions. For
management and severity, we observed somewhat inconclusive results
with little difference across the single- and multiview classifiers. We at-
tribute the latter to the limited predictive power of the ultrasonographic
findings for these targets (Marcinkevics et al., 2021), the diagnostic na-
ture of the chosen concepts and the overall moderate size of the training
set. For instance, it had been previously shown that the most important
predictor of the treatment assignment is peritonitis/abdominal guard-
ing (Marcinkevics et al., 2021) assessed during a clinical examination.
Among the US findings, most other predictively useful attributes can be
identified based on the RLQ image alone. Therefore, we hypothesize
that the additional views, e.g. depicting pathological lymph nodes or
meteorism, are not as helpful for the management classification. This
observation might explain the relatively worse performance of the
multiview approaches for this target variable.

Nevertheless, the current study exhibits certain limitations with
regard to its design, experimental setup, and proposed methods. The
appendicitis dataset represents a moderately-sized and relatively ho-
mogeneous patient cohort recruited from a single clinical center over a
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short time (between 2016 and 2021). Hence, in order to further validate
predictive models, an external validation is necessary using data from
diverse US devices, clinical centers, and countries. Another limitation is
the lack of histologically confirmed diagnoses among the conservatively
treated patients. This implies that the model validation and comparison
results presented above must be interpreted cautiously since we do
not have access to the true disease status for all subjects. The image
preprocessing pipeline could be improved further: currently, we discard
scale information in the US images, making it impossible to detect the
appendix diameter, a relevant sonographic sign of appendicitis (Reddan
et al., 2016). Lastly, concepts could be modeled in a more fine-grained
manner to incorporate physicians’ uncertainty. Instead of just differen-
tiating between the lack or presence of a finding, intermediate concept
categories could be included by, for example, collecting data from
multiple raters and considering discrepancies among them.

From the methodological perspective, we currently have a limited
theoretical understanding of the (SS)MVCBMs. In particular, it would
be desirable to explore the representations learned by SSMVCBMs and
the identifiability of the ground-truth generative factors. Moreover,
in the current implementation, it is not trivial to interpret the repre-
sentations; thus, additional regularization may be necessary, such as
rendering these representations disentangled.

Another potential improvement would be adopting a probabilistic
approach to the concept and target variable prediction, facilitating
more principled uncertainty estimation. As evidenced by the experi-
ments, our predictive models could benefit from calibration. Explicit
uncertainty modeling would allow for better-calibrated and more in-
terpretable probabilistic predictions that could be utilized downstream
to perform selective classification (Geifman and El-Yaniv, 2017) and
uncertainty-based concept interventions (Shin et al., 2023). In prac-
tice, uncertainty in concept predictions could be modeled by adapting
the proposed architecture with the modules from the stochastic seg-
mentation networks (Larochelle et al., 2020) or probabilistic concept
bottlenecks (Kim et al., 2023).

5. Conclusion and outlook

Motivated by the demand for model interpretability in biomedical
applications, we investigated the use of concept bottleneck models for
predicting the diagnosis, management and severity among pediatric
patients with suspected appendicitis, leveraging abdominal ultrasound
images. The densely annotated dataset used to develop the predic-
tive models was made publicly available, and one of the models was
deployed as a freely available demo web tool (https://papt.inf.ethz.
ch/mvcbm). Methodologically, we introduced several enhancements to
the conventional concept-based classification approach. Our proposed
models can handle multiple views of the object of interest and insuf-
ficient concept sets. Overall, our experimental results suggest that the
proposed methods can deliver competitive performance, while offering
an alternative to black-box deep learning models and allowing for
real-time interaction with the end user.

In future work, we aim to address several limitations outlined
above. We plan to validate the predictive models externally on the data
from a hospital located in another country. Various model design alter-
ations, such as other choices of learnable fusion, further regularization
of the learned representations, and uncertainty quantification, are also
to be considered. Moreover, we recognize the significance of extend-
ing our investigation beyond the retrospective study. For instance, it
would be interesting to explore the use of active learning to decide
on the acquisition of US images and concept labels for each subject.
From the clinical perspective, developed models should be extended
to incorporate clinical and laboratory parameters and consider other
conditions, such as COVID-19, during appendicitis. Additionally, we
anticipate that using more refined definitions of the target variables
could provide more insightful results, e.g. differentiating between sub-
acute and acute appendicitis for the diagnosis and predicting the risk
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of secondary appendectomy for the management. Adjustments in the
model architecture and the acquisition of a larger training dataset will
facilitate the incorporation of the color Doppler images in the analysis,
potentially making the prediction of the disease severity progression
more accurate.
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