
OVE RV I EW

Interpretable and explainable machine learning:
A methods-centric overview with concrete examples
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Abstract

Interpretability and explainability are crucial for machine learning (ML) and

statistical applications in medicine, economics, law, and natural sciences and

form an essential principle for ML model design and development. Although

interpretability and explainability have escaped a precise and universal defini-

tion, many models and techniques motivated by these properties have been

developed over the last 30 years, with the focus currently shifting toward deep

learning. We will consider concrete examples of state-of-the-art, including spe-

cially tailored rule-based, sparse, and additive classification models, interpret-

able representation learning, and methods for explaining black-box models

post hoc. The discussion will emphasize the need for and relevance of inter-

pretability and explainability, the divide between them, and the inductive

biases behind the presented “zoo” of interpretable models and explanation

methods.
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1 | INTRODUCTION: INTERPRETABILITY, EXPLAINABILITY, AND
INTELLIGIBILITY

Interpretable and explainable machine learning (ML) techniques emerge from a need to design intelligible machine
learning systems, that is, ones that can be comprehended by a human mind, and to understand and explain predictions
made by opaque models, such as deep neural networks (Goodfellow et al., 2016) or gradient boosting machines
(Friedman, 2001; Mason et al., 1999). The early research on interpretable machine learning dates back to the 1990s
(Rudin, 2019). It often does not refer to terms like “interpretability” or “explainability,” not to mention that many classi-
cal statistical models can be deemed interpretable.
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In general, there is no agreement within the ML community on the definition of interpretability and the task of inter-
pretation (Doshi-Velez & Kim, 2017; Lipton, 2018). For example, Doshi-Velez and Kim (2017) define interpretability of
ML systems as “the ability to explain or to present in understandable terms to a human.” This definition lacks mathemat-
ical rigor (Lipton, 2018). Nevertheless, the notion of interpretability often depends on the domain of application
(Rudin, 2019) and the target explainee (Carvalho et al., 2019), that is, the recipient of interpretations and explanations.
Therefore, an all-purpose definition might be infeasible (Rudin, 2019) or unnecessary. Other terms that are synonymous
with interpretability and also appear in the ML literature are “intelligibility” (Caruana et al., 2015; Lou et al., 2012) and
“understandability” (Lipton, 2018). These concepts are often used interchangeably.

Yet another term prevalent in the literature is “explainability,” giving rise to the direction of explainable artificial
intelligence (XAI) (Gunning & Aha, 2019). This concept is closely tied with interpretability; and many authors do not
differentiate between the two (Carvalho et al., 2019). Doshi-Velez and Kim (2017) provide a definition of explanation
that originates from psychology: “explanations are … the currency in which we exchange beliefs.” Rudin (2019) draws a
clear line between interpretable and explainable ML: interpretable ML focuses on designing models that are inherently
interpretable, whereas explainable ML tries to provide post hoc explanations for existing black-box models, that is,
models that are incomprehensible to humans or are proprietary (Rudin, 2019). Lipton (2018) stresses the difference in
questions the two families of techniques try to address: interpretability raises the question “How does the model work?,”
whereas explanation methods try to answer “What else can the model tell me?”

1.1 | Purpose of the review

This review is intended for a general machine learning audience interested in exploring the problems of interpretation
and explanation beyond the logistic regression model or random forest variable importance. It is not an exhaustive liter-
ature survey but rather an overview with a selection of concrete, comprehensively studied examples that represent dif-
ferent research directions. We will address the following questions throughout this review:

1. What is the difference between interpretable and explainable ML?
2. In what settings is it desirable for an ML model to be interpretable or to be explained?
3. How can the interpretability and explainability be assessed in practice?
4. What inductive biases are characteristic of interpretable models and explanation methods?

The material presented in this overview is partially based on the literature review from the article by Marcinkevics
and Vogt (2021), although the current work covers a much broader range of topics and has been updated with more
recent references.

1.2 | Related work and our contribution

To date, interpretable and explainable machine learning form an established subfield with its own research questions
and directions. There exist numerous thorough review papers tackling the topic. Many reviews can be categorized into
four groups briefly summarized below. (i) Some provide a relatively nontechnical and general introduction to the fun-
damental problems, concepts, and research questions and directions, for example, see works by Carvalho et al. (2019),
Barredo Arrieta et al. (2020), or Molnar (2020). (ii) Others view interpretability and explainability from a novel or
unusual perspective or provide opinions on the progress, challenges, and future directions. For instance, Ghassemi
et al. (2021) overview healthcare applications of explainability techniques and their failure cases and argue that XAI is
unlikely to address the real needs of practitioners. (iii) Another category of reviews focuses on a restricted class of
models or a family of methods. For example, Verma et al. (2020) discuss only counterfactual explanation methods, and
Puiutta and Veith (2020) specifically survey reinforcement learning techniques. (iv) Last but not least, some reviews dis-
cuss the use of interpretable and explainable ML in a particular application area, for example, genomics (Watson, 2021)
or robotics (Anjomshoae et al., 2019). Table 1 lists a nonexhaustive manual selection of the review articles from the four
categories mentioned above.

In contrast, while starting with a broad introduction to the topic and basic concepts, this review explores interpret-
ability and explainability via concrete, comprehensively studied examples of the latest models, methods, and their
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typical inductive biases. We provide an intuitive explanation for many techniques but do not shy away from examining
equations and definitions behind them hands-on. At the same time, we attempt to give the reader a well-rounded over-
view of the various lines of methodological work. The models and methods discussed later were chosen as representa-
tive of the current state of the field.

1.3 | Organization of the paper

In the remainder of this review, we discuss a need for interpretable and explainable machine learning techniques, giv-
ing examples from several application domains (Section 2). We provide an overview of the evaluation methods for inter-
pretability and explainability (Section 3). We then outline a taxonomy of the techniques for interpretable (Section 4.2)
and explainable (Section 4.3) ML with concrete examples of several recent developments. Finally, Section 5 contains
concluding remarks.

2 | MOTIVATION AND RELEVANCE

It is natural to question the utility of interpretable and explainable ML, especially given a widespread belief that a
trade-off exists between accuracy and interpretability (Rudin, 2019; Semenova et al., 2019). Therefore, it is sensible to
ask “Why would a designer of an ML system consider sacrificing performance for the sake of transparency?” First, it is
important to note that there are many cases when interpretability is not necessary, particularly when the studied prob-
lem is well-known, well-understood, and does not have substantial consequences (Doshi-Velez & Kim, 2017), for exam-
ple, mail sorting, movie recommendation, and so forth. Second, the perceived accuracy–interpretability trade-off may
not necessarily apply to all datasets and prediction problems (Rudin, 2019).

Arguably, the commonest motivation behind interpretability and explainability is developing user trust (Doshi-
Velez & Kim, 2017; Lipton, 2018). Lipton (2018) decomposes trust into knowing “how often a model is right” and “for
which examples it is right.” Sometimes we might want to gain a more profound intuition about the model's behavior. In
that case, an ability to interpret or explain could be another prerequisite for a trustable ML system. However, this ability
alone is not sufficient (Rudin et al., 2022), since it is not a substitute for accurate and reliable predictions.

In practice, interpretability and explainability are typically most useful when auditing ML systems and confirming
auxiliary desiderata beyond predictive performance (Carvalho et al., 2019; Doshi-Velez & Kim, 2017; Lipton, 2018).
From a legal perspective, interpretable and explainable ML is concordant with the EU General Data Protection Regula-
tion (GDPR) (Voigt & von dem Bussche, 2017) that states data subjects' right to an explanation of algorithmic decisions
and the right to be informed. It is worth mentioning that the GDPR does not prohibit black-box predictive models and
that the right to an explanation is not legally binding (Carvalho et al., 2019; Wachter et al., 2017). This, however, as
Wachter et al. (2017) note, does not undermine the social and ethical value of providing interpretations and

TABLE 1 Overview of manually collected review papers on interpretable and explainable ML or related topics.

High-level concepts Perspectives Restricted methods scope Applications

Barredo Arrieta et al.
(2020); Molnar (2020);
Linardatos et al. (2020);
Guidotti et al. (2019);
Murdoch et al. (2019);
Carvalho et al. (2019); Du
et al. (2019); Adadi and
Berrada (2018)

Ghassemi et al. (2021); Rudin
et al. (2022); Confalonieri
et al. (2021); Emmert-Streib
et al. (2020); Roscher et al.
(2020); Byrne (2019); Miller
(2019); Holzinger et al.
(2019)

Verma et al. (2020); Burkart
and Huber (2021); Puiutta
and Veith (2020); Moraffah
et al. (2020); Seeliger et al.
(2019); Gilpin et al. (2018);
Chakraborty et al. (2017);
Otte (2013)

Watson (2021); Tjoa and Guan (2021);
Zhang and Chen (2020); Stiglic
et al. (2020); Azodi et al. (2020);
Anjomshoae et al. (2019)

Note: Some of these reviews focus on high-level concepts and provide a relatively nontechnical and brief introduction to a wide range of research questions and
directions. Other papers approach the topic from a novel perspective or express an opinionated assessment of the field's progress and challenges. Some review
articles focus exclusively on specific model classes and method families, whereas others discuss interpretability and explainability in the context of a particular
application domain. Note that some articles might fit into multiple categories.
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explanations. Below we discuss several goals attainable with interpretability and explainability that are commonly cited
in the literature. Table 2 shows a few concrete examples of the considered use cases.

One could leverage an interpretable model or an explanation method to generate hypotheses about causal relation-
ships among the observed variables in the data (Lipton, 2018). In those cases, it is often desirable for the model or expla-
nation to pick up cause–effect relationships (Carvalho et al., 2019) rather than spurious associations. Such formulation
of interpretability is ambitious and inherently requires solving the problem of observational causal discovery (Nogueira
et al., 2022). Some authors even go further and suggest that genuinely interpretable machine learning should provide
causal interpretations and explanations of the data (G. Xu et al., 2020).

On a related note, interpretability and explainability can be instrumental in exploratory data analysis and scientific
discovery (Doshi-Velez & Kim, 2017). For example, interpretable support vector machines have been used for discover-
ing unknown physics in materials science (K. Liu et al., 2021). In quantum chemistry, neural networks allowed for an
analytical differentiable representation of the quantum mechanical wavefunction (Sch✓tt et al., 2019). In computa-
tional linguistics, Pimentel et al. (2019) have leveraged NLP models alongside an information-theoretic approach to
quantify the relationship between word forms and meanings. These are just a few examples of emerging machine-
learning-assisted scientific discovery. A comprehensive survey by Raghu and Schmidt (2020) contains many more scien-
tific deep learning applications.

“Good” ML models should be resistant to noisy inputs and domain shifts. Interpretations and explanations can be
instrumental in designing reliable, robust, and transferable models (Carvalho et al., 2019; Doshi-Velez & Kim, 2017;
Lipton, 2018). For instance, an iconic example wherein interpretability facilitated model “debugging” in that regard is
discussed by Caruana et al. (2015), who have used generalized additive models for pneumonia risk prediction,
exhibited, and alleviated unwanted confounding in the dataset. Another noteworthy example is the Manifold—an in-
house visualization and debugging tool for ML models developed at Uber (Carvalho et al., 2019; L. Li & Wang, 2019).

When ML algorithms are incorporated into decision-making, for example, social, economic, or medical, and use
sensitive personal data, we have to scrutinize their fairness (Barocas et al., 2019; Dignum, 2019) and privacy (Papernot
et al., 2018). Interpretations and explanations can be instrumental in exposing demographic disparities and reliance on
sensitive information in ML models (Carvalho et al., 2019; Doshi-Velez & Kim, 2017; Lipton, 2018) by making them
readily auditable. For example, using explanation methods, the ProPublica analysis of the Correctional Offender Man-
agement Profiling for Alternative Sanctions (COMPAS) recidivism model (Larson et al., 2016; Rudin, 2019) has revealed
that the COMPAS might be racially biased.

TABLE 2 A few interpretable and explainable machine learning use cases with concrete application examples.

Use case Reference Model/method Description

User trust Ustun and Rudin (2015) Supersparse linear integer models
(Section 4.2.2)

Linear models with integral
coefficients are introduced to learn
data-driven medical risk scores
amenable to clinicians

Causality Fujii et al. (2021) Self-explaining neural networks
(Section 4.2.8)

An interpretable neural network
model is introduced to discover
causal structure in time series data
representing animal trajectories

Scientific discovery Udrescu and Tegmark (2020) Symbolic regression (Section 4.2.10) A method is introduced to extract
succinct mathematical expressions
explaining physics-based data

Debugging Caruana et al. (2015) Generalized additive models
(Section 4.2.3)

Generalized additive models are used
to predict pneumonia risk and
readmission and mitigate spurious
correlations

Fairness Larson et al. (2016) Surrogate models (Section 4.3.1) Surrogate models are used to identify
racial bias in the proprietary
COMPAS software for recidivism
prediction

4 of 32 MARCINKEVIČS and VOGT
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In summary, interpretability and explainability, although not necessary in many straightforward applications,
become instrumental when the problem definition is incomplete and in the presence of additional desiderata, such as
trust, causality, or fairness. These principles can be helpful to both the specialists designing predictive models and end-
users who want to obtain a more profound intuition about the behavior of an ML system. In practice, there exists a
plethora of techniques, ranging from specially tailored interpretable neural network architectures to out-of-the-box
model-agnostic explanation methods. According to Bhatt et al. (2020), who have conducted interviews with 50 data sci-
entists and practitioners from 30 different organizations, the choice of an interpretable model or an explanation tech-
nique for a specific use case should depend on the identified stakeholders' needs and expectations regarding
interpretability and explainability.

3 | EVALUATION OF INTERPRETABILITY AND EXPLAINABILITY

Despite the abundance of methodological research, literature on evaluation approaches and metrics for interpretable
and explainable ML is still relatively scarce (Carvalho et al., 2019). There appear to be no uniform, well-established
standards for qualitative or quantitative evaluation, likely due to the lack of an all-purpose definition of interpretable
and explainable ML and the diversity and subjectivity of the desiderata and principles investigated in the literature.
Nauta et al. (2022) provide the most comprehensive survey to date of qualitative and quantitative methods. This
section outlines one popular classification of the evaluation criteria, due to Doshi-Velez and Kim (2017), that is concor-
dant with much of the current literature. Examples of how these evaluation methods could be implemented in practice
are provided in Table 3.

3.1 | Application-grounded evaluation

Application-grounded evaluation requires evaluating a method or a model on an exact task with human experts rep-
resenting the target audience. For example, the best way of evaluating an explainable ML-based decision support sys-
tem for medical diagnosis would be to ask doctors to diagnose diseases assisted by the system and compare their
performance to a reasonable baseline. Similar evaluation methods are widely adopted, for example, in the field of
human–computer interaction (MacDonald & Atwood, 2013) and, arguably, if implemented correctly, provide the stron-
gest evidence of success. A study by Jesus et al. (2021) is an excellent example of application-grounded evaluation: the
authors evaluate several explanation methods for fraud detection based on transaction data. They measure the accuracy
and time of decisions by fraud analysts assisted by different explanations and compare versus the decisions based purely
on the raw data and black-box model predictions.

TABLE 3 A taxonomy of evaluation approaches for interpretable and explainable machine learning due to Doshi-Velez and Kim (2017).

Evaluation approach
Requires a
user study? Cost Specificity Example

Application-grounded Yes High High Jesus et al. (2021) evaluate explanation methods for the real-
world task of fraud detection by measuring the accuracy
and time of decisions by fraud analysts assisted by
explanations

Human-grounded Yes Medium Medium Ribeiro et al. (2016) evaluate the proposed explanation
method based on the ability of subjects recruited at
Amazon Mechanical Turk to choose the best text
classification model

Functionally-grounded No Low Low Shrikumar et al. (2017) measure the decrease in image
classification accuracy after masking the features identified
as important by the proposed explanation method

Note: Approaches are characterized in terms of their cost, specificity with respect to the end-task and user, and the requirement of user studies. The last

column contains examples from the recent literature.
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3.2 | Human-grounded evaluation

Human-grounded evaluation can be viewed as a relaxed version of the application-grounded evaluation. It requires
conducting experiments with human users performing, possibly, a simplified task reminiscent of the target application.
For instance, Ribeiro et al. (2016) evaluate the proposed explanation technique using the human-grounded approach.
They recruit human subjects on Amazon Mechanical Turk (Paolacci et al., 2010) and compare their ability to choose the
best text classification model based on explanations provided by the proposed method versus baseline techniques. Nota-
bly, the recruited subjects are not experts in the subject area of texts, and the task is merely a proxy for the end-goal of
the ML system. Needless to say, although human-grounded evaluation is cheaper than the application-grounded
approach, its results inevitably lead to less specific and insightful conclusions.

3.3 | Functionally-grounded evaluation

Last but not least, functionally-grounded evaluation is, arguably, most appropriate for early feasibility studies and is the
simplest to implement since it requires no human subject experiments. These methods use some formal mathematical
definition of interpretability or explainability as a proxy measure. For example, Shrikumar et al. (2017) perform an
experiment evaluating different explanation methods for image classification based on the decrease in the classification
accuracy on the MNIST dataset (LeCun et al., 2010) after masking features identified as important by an explanation
method. Another example is the dataset of Kandinsky Patterns and accompanying challenges introduced by M✓ller and
Holzinger (2021): in brief, challenges comprise classifying simple visual patterns in controllable synthetic image
datasets while producing explanations in a specific format, for example, natural language. Similarly, by extending
CLEVR dataset (Johnson et al., 2017) for visual question answering, Arras et al. (2020) release the CLEVR-XAI bench-
mark for neural network explanation methods. While such evaluation approaches are compelling and can be
implemented entirely in silico, their insights are often limited by the subjectivity of the proxy measure chosen and the
simplicity of the toy datasets used.

The evaluation of interpretability and explainability in ML models largely remains an open problem. Interpretable
and explainable ML research still often relies on anecdotal or subjective evidence; for instance, Nauta et al. (2022)
observe that only 58% of the papers surveyed by them evaluate their models and methods quantitatively, and mere 22%
conduct a user study. Performing large-scale experiments with human subjects, identifying and systematizing good
proxy metrics, developing rigorous criteria and desiderata for evaluation are all essential for the advancement of the
whole field.

4 | INTERPRETABLE MODELS AND EXPLANATION METHODS

Now that we have established that interpretability and explainability of ML models are essential in certain settings and
how these properties are evaluated, the reader might be left wondering how interpretability of a model is achieved in
practice or how the predictions of a black-box model could be explained? The following sections discuss several state-
of-the-art interpretable and explainable ML methods. The selection of works does not comprise an exhaustive survey of
the literature. Instead, it is meant to illustrate the commonest properties and inductive biases behind interpretable
models and explanation methods using concrete instances.

Figure 1 provides a roadmap for the remainder of this section, compiling some of the most salient characteristics of
interpretable and explainable ML identified in the previous literature (Carvalho et al., 2019; Doshi-Velez & Kim, 2017;
Lipton, 2018; Molnar, 2020). These include the model class, scale at which interpretations or explanations are produced,
agnosticism with respect to the black-box model, and actionability. Tables 5 and 8 outline the properties of the concrete
techniques further. These properties will be defined and discussed in detail throughout the section.

4.1 | Notation and preliminaries

This review primarily focuses on interpretability and explainability in the context of supervised learning for classifica-
tion and regression tasks. However, some sections will discuss unsupervised learning scenarios, such as unsupervised
representation learning (Section 4.2.11). Table 4 introduces mathematical notation used throughout the section unless
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Interpretable & Explainable ML

Interpretable

e.g.

Explainable

e.g.
MODEL CLASS

linear
logistic regression

score-based
supersparse linear integer models 

rule-based

RuleFit
monotonic

falling rule lists
sparse

Lasso regression
additive

generalized additive models
symbolic

symbolic regression
neural networks

self-explaining neural networks

SCALE

global
linear regression

local
varying-coefficient models

AGNOSTICISM

model-agnostic
partial dependence plots

model-specific
random forest variable importance

SCALE

global
symbolic metamodels

local
Shapley values

ACTIONABILITY

not actionable
integrated gradients

counterfactual
counterfactual explanations

causal counterfactual
algorithmic recourse

FIGURE 1 Roadmap for the review of interpretable models and explanation methods based on a compilation of salient characteristics

identified in the literature (Carvalho et al., 2019; Doshi-Velez & Kim, 2017; Lipton, 2018; Molnar, 2020). Concrete examples for each

property are shown in italic.

TABLE 4 Mathematical notation used throughout the remainder of this review.

Symbol Explanation

p Number of features in tabular data

N Number of data points in the training set

xi Feature vector of the i-th data point

yi Label of the i-th data point

xj j-th feature

xi,j j-th feature of the i-th data point

f �ð Þ A model

β Coefficient vector in a linear model

βj Coefficient of the j-th feature

θ Model parameters

W Weight matrix

W i,: i-th row of a matrix

W :,j j-th column of a matrix

ℒ �ð Þ Loss function
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specified otherwise. For supervised learning, we assume given a training dataset of N data points D¼ xi,yið Þf gNi¼1, con-
sisting of features xi �X and labels yi �Y. For tabular data, features are given by a p-dimensional vector xi �ℝp. We
use f �ð Þ to refer to a classification or regression model, which may be interpretable or black-box, fitted on the training
data. In the unsupervised learning scenario, we assume a dataset of unlabeled points D¼ xif gNi¼1.

Throughout this section, we will occasionally provide examples of different techniques applied to a simple dataset
comprising clinical, laboratory, scoring, ultrasound variables, and ultrasound images acquired from a cohort of pediat-
ric patients admitted to the hospital with suspected appendicitis (Marcinkevics et al., 2021; Roig Aparicio et al., 2021).
The underlying problem of this dataset is binary classification—the prediction of the patient's diagnosis (appendicitis
vs. no appendicitis). The data analysis was approved by the University of Regensburg institutional review board
(Ethikkommission der Universität Regensburg, no. 18-1063-101). The dataset is publicly available at https://github.
com/i6092467/pediatric-appendicitis-ml.

4.2 | Interpretable models

Interpretable models, sometimes also referred to as “white-” or “gray-boxes,” are usually constrained and structured to
reflect physical constraints, monotonicity, additivity, causality, sparsity, or other desirable properties (Carvalho

TABLE 5 Properties of several reviewed interpretable models.

Model Scale Linear Sparse Additive Monotonic Unstructured data

F. Wang and Rudin (2015b): Falling rule lists • ✓ ✓

Ustun and Rudin (2015, 2017): Supersparse linear integer models • ✓ ✓ ✓

Hastie and Tibshirani (1986): Generalized additive models (GAMs) • ✓

Caruana et al. (2015): GAMs plus interactions • �
Sparse additive models

Ravikumar et al. (2007): Sparse additive models • ✓ ✓

Feng and Simon (2017): Sparse-input NNs • ✓ ✓

DeepPINK

Lu et al. (2018): DeepPINK • ✓ ✓

Hastie and Tibshirani (1993): Varying-coefficient models
J

Al-Shedivat et al. (2020): Contextual explanation networks
J

✓

Alvarez-Melis and Jaakkola (2018): Self-explaining NNs
J

✓

Schwab et al. (2019): Attentive mixtures of experts
J

✓

Koh et al. (2020) • � ✓

Udrescu and Tegmark (2020): Symbolic regression • � � � �
Note: “• ” and “

J
” denote globally- and locally-interpretable models, respectively. “✓” denotes that a property (columns) is satisfied by a technique (rows).

“�” denotes that a property either holds partially or that a model could be easily extended to satisfy the property.
Abbreviations: DeepPINK, deep feature selection using paired-input nonlinear knockoffs; GAM, generalized additive model; NN, neural network.

TABLE 6 A falling rule list from predicting the probability of appendicitis in pediatric patients based on tabular data comprising

clinical, laboratory, scoring, and ultrasonography variables.

# Rule Probability

1. Surrounding tissue reaction = yes AND Age �� 9:3,11:5½ � 0.96

2. Surrounding tissue reaction = yes AND Dysuria = no 0.94

3. Pathological lymph nodes = no AND Appendix on Ultrasound = yes 0.72

4. Peritonitis = local AND Erythrocytes in Urine < 3:0 0.60

5. C-reactive protein � 7:0,31:75½ � AND Alvarado Score � 7,10½ � 0.60

Note: The risk decreases monotonically across the list.
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et al., 2019; Rudin, 2019). Some researchers have even argued that interpretable supervised machine learning can be
viewed as an instance of constrained empirical risk minimization (Dziugaite et al., 2020). The choice of properties
depends on the particular application and the end-user. For example, Lipton (2018) notes that a high-dimensional lin-
ear model is not more interpretable than a very compact neural network. In contrast, a sparse linear model is compre-
hensible and easy to visualize. Therefore, two desirable characteristics are (i) simulatability and (ii) decomposability
(Lipton, 2018), that is, (i) a model must be comprehensible in a limited amount of time, and (ii) its inputs and parame-
ters should be intuitively meaningful. Table 5 contains concrete examples of machine learning models that fall into this
broad category.

4.2.1 | Rule-based models

Rule-based classification algorithms have been known for a long time. One could argue that these well-established tech-
niques are intrinsically interpretable. While single if-then rules are indeed readily comprehensible, inductive logic pro-
gramming (De Raedt, 1999), for instance, yields an unordered set of rules; on the other hand, decision trees (Loh, 2011)
are not monotonic and, thus, require additional mental effort. Several rule-based classification approaches have been
introduced with interpretability in mind. Some examples include repeated incremental pruning to produce error reduc-
tion (RIPPER) (Cohen, 1995), which keeps the number of rules small, RuleFit (Friedman & Popescu, 2008), which
induces rules from a sparse linear model with pairwise interactions, and falling rule lists (FRL) (F. Wang &
Rudin, 2015b), which prioritize monotonicity across the induced rules. Herein, we will focus on FRLs more closely as
an illustrative example.

FRLs (F. Wang & Rudin, 2015b) are binary classifiers motivated by the wide adoption of risk scores and risk stratifica-
tion systems in healthcare. A falling rule list is a list of if-then rules such that (i) during classification rules have to be
applied in the order given by the list, and (ii) the probability of the positive class is monotonically decreasing within the
list. Table 6 provides an example of an FRL for predicting the risk of appendicitis in pediatric patients, learnt from a small
publicly available tabular dataset (Section 4.1) (Marcinkevics et al., 2021; Roig Aparicio et al., 2021). Notably, the rules
use simple discretized features, and the risk decreases monotonically throughout the list. The constrained format of FRLs
makes them more understandable than decision trees and is natural for practical decision-making in a clinical setting.

In practice, FRLs can be learnt using a Bayesian modeling approach, wherein monotonicity and sparsity constraints
are encoded in the prior distribution. The simulated annealing procedure is used to sample from the posterior distribu-
tion and obtain the MAP estimator. C. Chen and Rudin (2018) further relax the original optimization problem of learn-
ing FRLs by introducing softly falling rule lists. Rather than having hard monotonicity constraints, the authors add a
non-monotonicity penalty term to the loss function. Such formulation is better suited to noisy real-world datasets,
where sparse and strictly monotonic solutions might be less performant. Another noteworthy extension is causal falling
rule lists (F. Wang & Rudin, 2015a) that leverage FRLs to estimate treatment effects in the potential outcomes frame-
work (Rubin, 2005).

4.2.2 | Score-based models

Another class of interpretable binary classification models, likewise motivated by medical risk scoring, is supersparse
linear integer models (SLIM), introduced by Ustun and Rudin (2015). SLIMs allow learning data-driven risk scores that

TABLE 7 A supersparse linear integer model for predicting the risk of appendicitis in pediatric patients based on tabular data

comprising clinical, laboratory, scoring, and ultrasonography variables (Roig Aparicio et al., 2021).

Condition Score

Peritonitis = generalized 6

Appendix diameter = 9–17 mm 6

Appendix diameter = 5.9–9.0 mm 5

Appendix on ultrasound = yes 4

Peritonitis = local 2

Note: Every feature has an integral coefficient attached to it.
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are reminiscent of conventional medical scoring systems, such as APACHE (Knaus et al., 1985) or SOFA (Vincent
et al., 1996). In contrast to FRLs, whose key focus is monotonicity, SLIMs represent sparse decision boundaries, that is,
relying on a limited number of features. Moreover, interpretability in SLIMs is additionally facilitated by learning a lin-
ear scoring function with integral coefficients.

Roughly, SLIMs require solving the following optimization problem (refer to the original paper by Ustun and Rudin
(2015) for the complete formulation):

min
β

1
N

XN
i¼1

1 yiβ
Τxi ≤ 0f gþλ0 βk k0þ λ1 βk k1, s:t:β�ℬ, ð1Þ

where β�ℬ is an integer-valued coefficient vector with ℬ¼ L,Lþ1,…,U�1,Uf gp, L,U �ℤ, L<U , and 1 �f g denotes
an indicator function. Notably, the original features, if continuous, have to be discretized and encoded as binary-valued
factors. The integer linear program (ILP) defined by Equation (1) enjoys the advantages of directly minimizing the 0–1
loss and the ℓ0 penalty instead of convex surrogate measures commonly adopted in statistics and machine learning lit-
erature, cf. Zou and Hastie (2005). Table 7 contains an example of a scoring system learnt from tabular data using SLIM
for predicting the risk of pediatric appendicitis in children. In practice, the risk for an individual described by features
xi is quantified by βΤxi, that is, by the sum of the coefficients corresponding to the applicable conditions.

In addition to the theoretical guarantees, the ILP formulation above has the benefit of easily incorporating and
enforcing additional constraints beyond integrality and sparsity, for example, introducing desirable “either-or” or “if-then”
conditions on features or preferences for (not) using certain variables. Ustun and Rudin (2015) also introduce a range of
extensions of SLIMs. Particularly noteworthy are personalized SLIMs with varying scoring rules for individual data points.
The authors also present rule-based adaptations. Further algorithmic improvements are made by Ustun and Rudin (2017).

4.2.3 | Generalized additive models

As mentioned before, decomposability is a desirable property of interpretable ML models (Lipton, 2018). One class of
“decomposable” functions is additively separable functions (Segal, 1994). We say that a function f x1,x2,…,xp

� �
is addi-

tively separable if we can rewrite it as a sum of univariate terms: f x1,x2,…,xp
� �¼Pp

j¼1uj xj
� �

. Hastie and Tibshirani
(1986) introduce the class of generalized additive models (GAM) that rely on this additivity property. In particular, for p
features, a GAM is given by

g yð Þ¼
Xp
j¼1

sj xj
� �

, ð2Þ

where g �ð Þ is a link function, sj �ð Þ are smooth functions, often referred to as shape functions (Lou et al., 2012). GAMs
are an extension of the linear model that preserves the additivity but allows introducing nonlinearities in individual var-
iables by choosing appropriate shape functions. This model class ignores interactions between variables. Therefore, the
influence of each feature is easily comprehensible and can be visualized by plotting the corresponding shape function
sj �ð Þ. Figure 2 depicts shape functions for two continuously-valued features in a GAM for classification, fitted on a tabu-
lar dataset.

Lou et al. (2012) conduct extensive experimental comparison among different methods for fitting GAMs and choices
of sj �ð Þ. They consider least squares, gradient boosting, and backfitting approaches. In addition to the standard use of
spline-based shape functions (Hastie & Tibshirani, 1986), Lou et al. (2012) consider single, bagged, boosted, and boosted
bagged decision trees. Building on the work by Lou et al. (2012), Caruana et al. (2015) propose a simple yet more per-
formant extension by including two-way interaction terms referred to as generalized additive models plus interac-
tions (GA2M):

g yð Þ¼
Xp
j¼1

sj xj
� �þXp

j¼1

Xp
k¼1

k ≠ j

sj,k xj,xk
� �

, ð3Þ
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where sj,k xj,xk
� �

are pairwise interaction terms. Pairwise interactions are still intelligible since they can be visualized
using simple plots, for example, heat maps. Another noteworthy extension of GAMs is sparse additive models (SpAM),
proposed by Ravikumar et al. (2007). SpAMs combine the ideas of Hastie and Tibshirani (1986) with sparse linear
modeling for high-dimensional regression problems (Zou & Hastie, 2005). In addition to shape functions sj �ð Þ, the
authors introduce a weight vector b�ℝp multiplied with outputs of sj �ð Þ and penalize its norm in the loss function. In
this way, SpAMs rely on a sparse subset of features while still preserving the additive structure of the classical GAMs.
To further improve the scalability and performance of GAMs on large datasets and their modularity, Agarwal et al.
(2021) and Chang et al. (2021) introduce neural generalized additive models that rely on neural networks as building
blocks. Specialized cases of this model class address specific modeling tasks or induce additional inductive biases, for
example, application to survival analysis by Utkin et al. (2022) or, similar to SpAMs, sparse neural additive models pro-
posed by S. Xu et al. (2022). Another line of work focuses on improving interactivity and actionability of GAMs via scal-
able and accessible visual diagnostics and editing programs (Fasiolo et al., 2019; Hohman et al., 2019; Z. J. Wang
et al., 2021).

TABLE 8 Properties of reviewed explanation techniques.

Method Scale Attribution Agnostic
Reference-
free Contrastive Diverse Causal

Unstructured
data

Ribeiro et al. (2016): LIME
J

, • ✓ ✓ ✓ ✓

Shrikumar et al.
(2017): DeepLIFT

J
✓ ✓

Lundberg and Lee
(2017): SHAP

J
, • ✓ ✓ ✓ ✓

Sundararajan et al.
(2017): Integrated gradients

J
✓ ✓

Erion et al. (2021): Expected
gradients

J
✓ ✓ ✓

Kim et al.
(2018): Testing with CAVs

• ✓ ✓

Schrouff et al.
(2021): Integrated CS

J
✓

Alaa and van der Schaar
(2019): Symbolic metamodels

• ✓ ✓ ✓

Wachter et al. (2017): CF
explanations

J
✓ ✓ �

Mothilal et al. (2020): Diverse
CF explanations

J
✓ ✓ ✓ �

Karimi, Barthe, Balle, and
Valera (2020): MACE

J
✓ ✓ ✓ �

Mahajan et al. (2019): VAE-
based CF explanations

J
✓ ✓ ✓ � � ✓

S. Liu et al. (2019): GAN-based
CF explanations

J
✓ ✓ ✓ � ✓

Chang et al. (2019): FIDO CF
saliency maps

J
✓ ✓ ✓ � ✓

Algorithmic recourse

Karimi, von Kügelgen,
Schölkopf, & Valera (2020)

J
✓ ✓ ✓

Note: “• ” and “
J

” denote global and local explanation methods, respectively. “✓” denotes that a property (columns) is satisfied by a technique (rows). “�”
denotes that a property either holds partially or that a method could be easily extended to satisfy the property.
Abbreviations: CAV, concept activation vector; CF, counterfactual; CS, contextual sensitivity; DeepLIFT, deep learning important features; FIDO, fill-in the

dropout; GAN, generative adversarial network; LIME, local interpretable model-agnostic explanations; MACE, model-agnostic counterfactual explanations;
SHAP, Shapley additive explanations; VAE, variational autoencoder.

MARCINKEVIČS and VOGT 11 of 32

 19424795, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1493 by E
th Z

ürich E
th-B

ibliothek, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.2.4 | Sparse-input neural networks

In many high-dimensional regression and classification problems, for example, genomic data analysis (Lucas
et al., 2006) and social network modeling (Ravazzi et al., 2018), sparsity is an important inductive bias that allows pro-
ducing parsimonious interpretable models. We have already mentioned sparsity as a desirable property when describing
supersparse linear integer models (Section 4.2.2). However, the predictive performance of SLIMs could be limited by their
assumption of linearity. Recently, there have been renewed efforts in leveraging sparsity-inducing regularization to under-
stand and control the behavior of neural networks models (Feng & Simon, 2017; Khanna & Tan, 2020; Lu et al., 2018; Tank
et al., 2021; Valdes et al., 2021). Significant advantages of neural networks are their ability to model complex nonlinear rela-
tionships and their scalability to large datasets and unstructured data types, such as text and images.

Feng and Simon (2017) provide a thorough theoretical and empirical analysis of sparse-input neural networks
(SPINN) in the context of p�N problems (Hastie et al., 2009). SPINNs are fully connected neural networks character-
ized by sparse weights in the input layer and are trained by minimizing the following loss function:

min
θ

1
N

XN
i¼1

ℒ yi, f θ xið Þð Þþ λ0
XL
a¼2

W að Þ�� ��2
2þλ

Xp
j¼1

Ωα W 1ð Þ
� ,j

� �
, ð4Þ

where θ¼ W að Þ� �L
a¼1 are weight matrices in layers 1≤ a≤L; W 1ð Þ

� ,j refers to the j-th column of the input layer weight
matrix; and Ωα βð Þ¼ 1�αð Þ k βk1þα k βk2 with α� 0,1ð Þ is the sparse group Lasso penalty (Simon et al., 2013). Here,
parameter α controls the trade-off between the element-wise Lasso and the group Lasso penalties. Simply put, this pen-
alty ensures that all input weights corresponding to a single feature are shrunk together, allowing for feature selection
in the style of the classical Lasso (Figure 3).

Feng and Simon (2017) prove probabilistic, finite-sample generalization guarantees for this model class and demon-
strate performance gains empirically for high-dimensional data with higher-order interactions compared to other non-
parametric models. Tank et al. (2021) leverage similar penalties in the context of autoregressive time series modeling.
Khanna and Tan (2020) apply the approach to a more advanced neural network architecture, namely, the long short-
term memory (Hochreiter & Schmidhuber, 1997).

4.2.5 | Knockoff features

One could argue that the ultimate goal of SPINNs (Feng & Simon, 2017) is “deep” feature selection. In a similar vein,
Lu et al. (2018) propose another solution—deep feature selection using paired-input nonlinear knockoffs (DeepPINK),

FIGURE 2 Example of a visual interpretation of a generalized additive model (GAM) for predicting the risk of appendicitis among

pediatric patients based on tabular data comprising clinical, laboratory, scoring, and ultrasonography variables. The plots depict shape

functions sj �ð Þ for two features present in the dataset: (a) body temperature and (b) white blood cell count. Functions are plotted as solid

lines, 95% confidence intervals (CI) are plotted as dashed lines. Observe that the GAM predicts higher probabilities of appendicitis in

children with higher body temperatures and white blood cell counts. The plots were generated using pyGAM library (Servén &

Brummitt, 2018).
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which leverages knockoff filters (Barber & Candès, 2015) to facilitate interpretability and sparsity in deep neural net-
works at the input level. A compelling advantage of this technique over SPINNs is that it controls for the false discovery
rate (FDR) (Benjamini & Hochberg, 1995) when selecting significant features. Knockoff filters were initially proposed
by Barber and Candès (2015). In brief, knockoff filters are a variable selection procedure that controls the FDR exactly
in a linear model in finite sample settings, whenever there are at least as many observations as features. The key idea is
to construct knockoff features mimicking the dependency structure of the original features; augment the original
dataset with knockoffs; and compare statistics for each original feature and its knockoff, for example, the absolute value
of the regression coefficient. In this way, variables with genuine signals can be identified while controlling for the FDR.

Candès et al. (2018) propose “model-X” knockoffs which rely on the assumption that the joint distribution of vari-
ables is known, without assuming anything about the distribution of the output conditional on features. Their signifi-
cant limitation is that the generation of knockoff features is based on a known multivariate Gaussian distribution.
Jordon et al. (2019) alleviate this issue by introducing the KnockoffGAN—a generative adversarial network (GAN)
(Goodfellow et al., 2014) for knockoff generation capable of producing more complex dependency structures. Along
similar lines, following the model-X framework, Romano et al. (2019) propose constructing knockoff features with deep
generative models utilizing the maximum mean discrepancy (MMD) (Y. Li et al., 2015).

4.2.6 | Varying-coefficient models

While GAMs (Section 4.2.3) generalize the linear model by allowing for nonlinearities in individual features, varying-
coefficient models (VCM), proposed by Hastie and Tibshirani (1993), offer a different sort of generalization. In a VCM,
variable coefficients vary smoothly with so-called “effect modifiers”—additional, potentially exogenous, vari-
ables r1,r2,…,rp:

g yð Þ¼ β0þ
Xp
j¼1

xjβj rj
� �

, ð5Þ

wherein βj �ð Þ is a smooth function corresponding to the varying coefficient of the j-th feature. The choice of variables
r1,…,rp depends on a particular application. Note that rj may coincide with features xj or correspond to some additional
attributes. For example, in dynamical systems, time can be a single effect modifier, producing time-varying coefficients.

Notably, VCMs are only locally interpretable since coefficients vary across data points, that is, interpretations may
differ wildly between different instances. By contrast, all of the model classes described before are globally interpretable:
the insights gained from inspecting model parameters are equally applicable to all data points. While the interpretation
of locally interpretable is far more cumbersome, this trade-off may be necessary in pursuit of a more flexible model with
personalized interpretations. Several more recent interpretable ML models (Al-Shedivat et al., 2020; Alvarez-Melis &
Jaakkola, 2018) discussed in the following sections bear a striking resemblance to VCMs: they essentially generalize this

FIGURE 3 A graphical representation of a fully connected neural network with p input variables x1,…,xp. Input weights corresponding
to the feature x2 are shown as bold dashed lines. If x2 were not useful for predicting the output, a sparse-input network would shrink all of

its input weights W 1ð Þ
� ,2 toward 0 thus, deselecting x2 completely.
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conventional statistical framework to unstructured data types, such as images, by parameterizing βj �ð Þ with neural
networks.

4.2.7 | Contextual explanation networks

We have seen before how sparsity could be introduced in fully connected neural networks and feature selection could
be performed (Sections 4.2.4 and 4.2.5). Nevertheless, quantifying and explaining the contributions of individual inputs
to the predictions in neural networks is not straightforward due to entangled interactions in downstream layers of a
network (Guerguiev et al., 2017; Tank et al., 2021). While there has been a substantial effort and progress in explaining
neural network models post hoc (Section 4.3.1), that is, after training, a few lines of research instead focus on building
interpretable neural network architectures whose structure is decomposable and whose parameters can be interpreted
directly to produce local explanations.

For instance, Al-Shedivat et al. (2020) introduce contextual explanation networks (CEN)—a class of neural network
architectures that jointly predict and explain their predictions without requiring additional model introspection. CENs
can be defined as deep probabilistic models for learning the conditional distribution of the output variables Pw Y j x,cð Þ,
parameterized by w, where c� C are context variables observed in addition to the features x �X and y�Y are outputs,
to be predicted given x and c. The probabilistic model is then specified by

y �P Y jx,θð Þ,
θ �Pw θjcð Þ,
Pw Y jx,cð Þ ¼

Z
ϑ � Θ

P Y jx,ϑð ÞPw ϑ jcð Þdϑ,
ð6Þ

where P Y jx,θð Þ is a predictive model parameterized by θ that explicitly relates features to the outputs. Thus, parame-
ters θ�Θ can be seen as an explanation of a model's prediction that is specific to the context given by variables c. For
example, Al-Shedivat et al. (2020) consider the problem of poverty prediction based on categorical variables from living
standards measurement surveys and the context given by satellite images. In practice, Pw θjcð Þ is replaced with an
encoder neural network and the predictive distribution P Y jx,θð Þ is parameterized by an interpretable function, for
example, a linear model f θ xð Þ¼ softmax θΤx

� �
.

CENs are closely related to VCMs (Hastie & Tibshirani, 1993). In fact, they can be seen as a special case: context var-
iables c (Equation 6) are the effect modifiers for features x (cf. Equation 5). The principal contribution of CENs is to cast
the VCMs into a probabilistic framework and parameterize coefficients with neural networks. The authors demonstrate
the efficacy of their approach on classification and survival analysis tasks. They show that CENs are still interpretable
in datasets with noisy features where post hoc explanation techniques (Section 4.3) are often inconsistent and
misleading.

4.2.8 | Self-explaining neural networks

Another class of functions related to VCMs was introduced by Alvarez-Melis and Jaakkola (2018). Similarly to
Al-Shedivat et al. (2020), the authors develop an intrinsically interpretable neural network model that allows
disentangling contributions of individual features or basis concepts. Self-explaining neural networks
(SENN) (Alvarez-Melis & Jaakkola, 2018) are motivated by (i) explicitness, (ii) faithfulness, and (iii) stability
properties—three desiderata for interpretability. The authors claim that SENNs are (i) explicit because their expla-
nations are “immediate” and “understandable,” (ii) faithful because explanations reflect the ground truth relation-
ship between the basis concepts and outputs, and (iii) stable because their explanations are consistent for similar
data points.

SENNs act like a simple model locally but can be highly complex and nonlinear globally. In their most basic form,
SENNs are given by

f xð Þ¼ θ xð ÞΤx, ð7Þ
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where θ �ð Þ is a neural network with p outputs referred to as generalized coefficients. Without further restrictions, the
model in Equation (7) is not more interpretable than a classical multilayer neural network. Therefore, SENNs are
encouraged to be locally linear: it needs to hold that rxf xð Þ≈ θ x0ð Þ for all x in the neighborhood of x0. Under this con-
straint, individual components of q xð Þ act as interpretable and adaptive regression coefficients.

Further extensions of the model in Equation (7) are possible. For example, instead of raw features one can introduce
basis concepts h xð Þ :ℝp !ℝk and use them alongside the generalized coefficients: f xð Þ¼ θ xð ÞΤh xð Þ. Furthermore,
depending on the ground task, some generalized interpretable link function g �ð Þ can be used, resulting in the refined
model definition below (see Figure 4 for a schematic visualization):

f xð Þ¼ g θ xð Þ1h xð Þ1,…,θ xð Þkh xð Þk
� �

, ð8Þ

where zj ¼ θ xð Þjh xð Þj is the influence score, or importance, of the j-th concept for data point x.
In practice, a SENN in Equation (8) is trained by minimizing the following gradient-regularized loss function that

balances performance with interpretability:

ℒy f xð Þ,yð Þþλℒθ f xð Þð Þ, ð9Þ

where ℒy f xð Þ,yð Þ is a loss term for the ground classification or regression task, for example, the mean squared error or
the cross entropy; λ>0 is a regularization parameter; and ℒθ f xð Þð Þ is the gradient penalty:

ℒθ f xð Þð Þ¼ rxf xð Þ�θ xð ÞΤJhx xð Þ�� ��
2, ð10Þ

where Jhx is the Jacobian of h �ð Þ w.r.t. x. Alvarez-Melis and Jaakkola (2018) postulate further desirable properties that
SENNs should satisfy:

1. The link function g �ð Þ is monotonic and additively separable in its arguments (see Sections 4.2.1 and 4.2.3).
2. The link function is influenced by all of the basis concepts, that is, for all 1≤ i≤ k, ∂g

∂zi
>0 where zi ¼ θ xð Þih xð Þi.

3. 3. Generalized coefficients θ �ð Þ are locally difference-bounded by h �ð Þ, that is, for every x0, there exist δ>0 and
L�ℝ such that if x�x0k k2 < δ, then θ xð Þ�θ x0ð Þk k2 ≤L h xð Þ�h x0ð Þk k2.

4. Basis concepts h xð Þi
� �k

i¼1 are interpretable representations of x.
5. The number of concepts k is small.

In addition, the authors emphasize three guiding criteria for choosing interpretable basis concepts: (i) fidelity—
representations should contain relevant context information; (ii) diversity—concepts used to represent inputs should be
few and nonoverlapping; and (iii) grounding—concepts should be immediately understandable to a human. Moreover,
they demonstrate how such representations can be learnt using autoencoder neural networks in an end-to-end manner
in conjunction with the SENN model.

The class of functions described by the assumptions above is quite broad, for example, generalized linear models
(Nelder & Wedderburn, 1972) and the nearest neighbor classifier satisfy these. Nevertheless, the advantage of SENNs
stems from the richness of neural network architectures that could be used for functions θ �ð Þ and h �ð Þ. Like CENs
(Section 4.2.7), SENNs are closely related to varying-coefficient models (Section 4.2.6). The main difference is that in
SENNs, regressors themselves act as effect modifiers and that the framework is augmented with interpretable basis con-
cepts, defined on top of the raw inputs. Notably, all of the three model classes (Al-Shedivat et al., 2020; Alvarez-Melis &
Jaakkola, 2018; Hastie & Tibshirani, 1993) described so far hold a promise of local interpretability while providing room
for predictively powerful models.

4.2.9 | Attentive mixtures of experts

In natural language processing, the attention mechanism (Vaswani et al., 2017) has become a powerful tool for explor-
ing relationships between inputs and outputs of deep neural networks and is utilized for interpretability and
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performance. Nevertheless, several works have criticized the naïve use of attention for model interpretation (Jain &
Wallace, 2019; Serrano & Smith, 2019), showing that it is often uncorrelated with gradient information and other natu-
ral feature importance measures. Some works have focused on improving the attention mechanism, particularly for
interpretability, for example, models by Nauta et al. (2019) and Schwab et al. (2019). Schwab et al. (2019) propose a mix-
ture of experts model with attentive gates for learning feature importance values alongside predictions. They introduce
an auxiliary objective to mitigate the shortcomings mentioned earlier.

The attentive mixture of experts (AME) is a neural network model comprising several connected “experts,” that is,
subnetworks. The AME is given by the following equations:

f xð Þ ¼
Xp
j¼1

Gj hallð Þ|fflfflfflffl{zfflfflfflffl}
aj

Ej xj
� �|fflffl{zfflffl}
cj

,

hall ¼ h1,c1,h2,c2,…,hp,cp

 �

,

aj ¼
exp uΤ

j us,j

� �
Pp
k¼1

exp uΤ
kus,k

� � , for 1≤ j≤ p,

uj ¼ σ W jhallþbj
� �

, for 1≤ j≤ p,

ð11Þ

where cj ¼Ej xj
� �

is the output of the j-th expert subnetwork given the input variable xj; aj is the output of the j-th atten-
tive gating network Gj �ð Þ quantifying the importance of the j-th feature; hj denotes a hidden representation from the
j-th expert subnetwork; vector uj is a projected representation of hall; vector us,j is a per-expert learnable context vector;
and σ �ð Þ is a nonlinear activation function. Notably, the architecture specified by Equation (11) allows disentangling
contributions of individual features to predictions, using attentive gating and per-feature subnetworks.

The AME is trained end-to-end by minimizing a loss function augmented with an auxiliary objective. The auxiliary
objective encourages the importance score aj to reflect the decrease in error associated with the contribution of the j-th
expert, that is, the j-th feature, similar in spirit to the definition of the RF variable importance (Breiman, 2001):

Δεx,j ¼ εx ∖ jf g � εx , for 1≤ j≤ p, ð12Þ

where εx ∖ jf g and εx denote the prediction error of the model without the j-th feature and of the full model, respectively.
The error difference above can be normalized to produce

ωx,j ¼ Δεx,jPp
k¼1

Δεx,k
, for 1≤ j≤ p: ð13Þ

FIGURE 4 A schematic depiction of a self-explaining neural network model. Input variables x1,…,xp are mapped to generalized

coefficients and interpretable basis concepts by neural networks θ �ð Þ and h �ð Þ, respectively. Generalized coefficients and basis concepts are

then combined by an interpretable link function g �ð Þ into a predicted value by.
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Ideally, attentive gating network outputs should be correlated with the feature importance measure defined in
Equation (13). Therefore, Schwab et al. (2019) introduce an auxiliary term into the loss function for training the AME.
In particular, the authors minimize the discrepancy between normalized error differences (Equation 13) and the out-
puts of the attentive gating networks:

ℒaux ¼ 1
N

XN
i¼1

D ωxi ,axið Þ, ð14Þ

where D � , �ð Þ is some discrepancy measure, for example, the Kullback–Leibler divergence; ωxi and axi are normalized
error differences and the attentive gating network outputs, respectively, for the i-th data point.

The attentive mixture of experts successfully overcomes limitations of the naïvely trained attention mechanism by
introducing regularization terms into the loss function which forces learning importance scores that reflect the increase
in prediction error from removing a feature. Next to CENs and SENNs (Sections 4.2.7 and 4.2.8), AMEs are yet another
class of locally interpretable neural network architectures which produce individualized explanations for each data
point at prediction time. However, the relationship between predictions and explanations is, arguably, more opaque
within the AMEs than the other model classes discussed so far.

4.2.10 | Symbolic regression

Most interpretable models tend to learn some numerical measure of feature importance that can be visualized and
interpreted either globally or locally. By contrast, as its name suggests, symbolic regression tries to provide a symbolic
interpretation of the data. More formally, symbolic regression is a problem of inferring an analytic form for an
unknown function that can only be queried (Amir Haeri et al., 2017; Udrescu & Tegmark, 2020). Although this problem
emerged long before the relatively recent interest in explainable and interpretable ML (McKay, 1995), symbolic regres-
sion perfectly fits the broad category of interpretable models. While neural networks and many other models do
provide analytic representations, symbolic regression usually seeks parsimonious equations, for example, making
further restrictions to polynomial forms. Thus, symbolic regression can be leveraged to learn interpretable func-
tional relationships from raw data (Jin et al., 2019). For example, when regressing y on features x, a mathematical
expression f xð Þ¼ x1þ2cos x2ð Þþ exp x3ð Þþ0:1 could be a candidate solution for symbolic regression. The optimization
problem behind symbolic regression can be formalized as follows:

min
f � F

1
N

XN
i¼1

ℒ f xið Þ,yið Þ, ð15Þ

where F is a set of succinct mathematical expressions and ℒ � , �ð Þ is the loss function for the ground regression or classi-
fication task. In practice, symbolic regression often reduces to combinatorial optimization. Therefore, some conven-
tional approaches include genetic programming (Amir Haeri et al., 2017; McKay, 1995) and simulated annealing
(Stinstra et al., 2007). Petersen et al. (2021) and Biggio et al. (2021) have proposed neural-network-based solutions to
the problem. Namely, Biggio et al. (2021) predict symbolic expressions using a Transformer model pretrained on a
large-scale corpus of procedurally generated input dataset and symbolic equation pairs. Last but not least, we remark
that symbolic regression is also helpful for explaining the behavior of black-box machine learning models post hoc, for
example, a neural network could be approximated by a symbolic surrogate model (Section 4.3.3).

4.2.11 | Interpretable representation learning

In the previous sections, we have considered interpretability exclusively in supervised learning and at the level of raw
input variables. Sometimes we might want to learn low-dimensional embeddings, or representations, in an
unsupervised, weakly- or semi-supervised setting instead of exploring purely discriminative relationships among raw
variables. Representations can be helpful for several, usually unknown at the time of representation learning,
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downstream applications. A desirable property targeted by some of the representation learning techniques is interpret-
ability. Similarly to the classification and regression settings, interpretability is usually attained by enforcing some con-
straints on representations.

Disentanglement is one such constraint: in disentangled representations, separate sets of dimensions are uniquely
correlated with salient, semantically meaningful features. In addition to interpretability, disentanglement facilitates the
controllable generation of synthetic data. Recently, many deep generative models have been used for disentangled rep-
resentation learning—for example, X. Chen et al. (2016) demonstrate experimentally that their InfoGAN model, an
information-theoretic extension of GANs, learns disentangled representations from image data. Similar results have
been attained with variational autoencoders (VAE) (Higgins et al., 2016; Kingma & Welling, 2014; Kingma &
Welling, 2019) by introducing statistical independence constraints on embedding dimensions via a factorizing prior dis-
tribution. In theory, learning identifiable disentangled representations in a completely unsupervised manner is funda-
mentally impossible (Locatello et al., 2019). However, the latter result does not diminish the utility of disentangled
representation learning by injecting inductive biases and implicit or explicit forms of supervision. For instance, Adel
et al. (2018) and Taeb et al. (2022) consider semi-supervised variants of the VAE wherein conditioning the representa-
tion on some side information or label helps the disentanglement and interpretability of the generative model.
Tschannen et al. (2018) provide a thorough overview of noteworthy advancements and inductive biases in autoencoder-
based representation learning. Many of the approaches discussed by them strive toward some form of interpretability,
although often do not state that explicitly.

Disentanglement is not the only approach to interpretable representation learning. Several lines of work have
focused on introducing additional supervision to learn representations reflecting high-level concepts useful in classifica-
tion or regression (Z. Chen et al., 2020; Koh et al., 2020; Marcos et al., 2021). One such approach is concept bottleneck
models (N. Kumar et al., 2009; Lampert et al., 2009), recently reexplored by Koh et al. (2020). As opposed to the deep
generative models discussed above, concept bottlenecks perform supervised learning. For predicting the output y based
on features x �ℝp, a bottleneck model is given by f g xð Þð Þ, where g :ℝp !ℝk and f :ℝk !ℝ. Here, f �ð Þ relies entirely
on interpretable concepts c¼ g xð Þ, and g �ð Þ is learnt in a supervised manner using additional concept labels. For
instance, consider classifying bird images into species based on a set of visual traits defined by ornithologists. Koh et al.
(2020) explore a range of strategies for training such models and propose to parameterize f �ð Þ and g �ð Þ by deep neural
networks. A significant advantage of a concept bottleneck f g xð Þð Þ over a block-box ef xð Þ is that at prediction time, an
expert end-user, for example, a medical doctor, can intervene on incorrectly inferred concepts. However, the applicabil-
ity of concept bottleneck models is limited to areas and tasks where vast domain knowledge is available and where
experts can cheaply label instances.

To summarize, the problem of interpretability in representation and, more broadly, unsupervised learning is still
under-explored, despite a growing body of research. As seen from the previous sections, many techniques focus exclu-
sively on classification and regression tasks, while deep clustering, generative modeling, and representation learning
have attracted comparatively less attention. With the emergence of new socially consequential application domains, a
need for interpretable unsupervised learning techniques is becoming apparent.

4.3 | Explanation methods

We now turn toward a completely different family of methods. According to Rudin (2019), explainable ML focuses on
introspection for existing black-box models, for instance, by training a simpler surrogate model post hoc. As seen
before, explanations can take various forms: textual, visual, symbolic, and so forth. Even a data point from the training
set or a synthetic data point can serve as an explanation (Lipton, 2018). An explanation can be global, that is, character-
izing the whole dataset, or local, that is, explaining individual classification or regression outcomes (Carvalho
et al., 2019; Molnar, 2020). It can be model-specific, that is, capable of explaining only a specific class of models, or
model-agnostic, that is, applicable to an arbitrary model. Carvalho et al. (2019) discuss several desirable properties of an
explanation technique: (i) faithfulness—an explanation should be faithful to the original black-box model, that is, an
explanation should in some way accurately predict the behavior of the black-box; (ii) consistency and stability—
explanations for different models tackling the same task should be consistent, and explanations for similar data points
should be similar; (iii) comprehensibility—the end-user should be able to comprehend explanations easily;
(iv) certainty and novelty—explanations should convey (un-)certainty about predictions and should warn the end-user
if the data point considered is “far away” from the support of the training set; (v) representativeness—explanations
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should “cover” training data evenly, particularly for prototype-based explanation techniques (Kim et al., 2014, 2016).
Table 8 further expands on the list of salient characteristics and presents the explanation methods overviewed in the fol-
lowing sections.

4.3.1 | Attribution methods

Arguably, the family of explanation techniques that is used most frequently in practical applications are attribution
methods. Sundararajan et al. (2017) define an attribution as follows: for a function f :ℝp ! 0,1½ �, representing a black-
box binary classifier, and an input x �ℝp, an attribution for x with respect to some reference, also referred to as base-
line, x0 (some of the attribution techniques do not require a reference sample x0) is given by Af x,x0ð Þ¼ a1 � � � ap

� �Τ
,

wherein aj quantifies the “contribution” of the feature xj to the prediction made by the model f �ð Þ for data point x. We
will adhere to the definition and notation above throughout this section. The use of attributions as a model diagnostic
has become ubiquitous in ML applications (Arcadu et al., 2019; Kelley et al., 2018; Y. Liu et al., 2020; Parsa et al., 2020),
especially for image data, since attributions can be readily visualized as a heat map and are helpful for understanding
on which input regions the model “concentrates.” Figure 5 shows an example of an attribution heat map for a deep
neural network classification model trained to predict appendicitis in children based on ultrasound images.

Most recent attribution techniques focus specifically on explaining deep neural network models, and many of them
implicitly or explicitly rely on gradient information to produce attributions. Ancona et al. (2019) distinguish two differ-
ent categories of attribution methods: (i) sensitivity-based methods quantify how strongly the output of the model f �ð Þ
changes if an input variable is perturbed, whereas (ii) salience-based methods quantify marginal effects of features on
the output of f �ð Þ compared to some baseline, for example, the same input but with the feature of interest masked or
removed. Below we describe a few archetypal examples of attribution techniques.

Lime
Local interpretable model-agnostic explanations (LIME), introduced by Ribeiro et al. (2016), seek interpretable data rep-
resentations that are faithful to the given black-box classifier f �ð Þ. The authors define an explanation ξ �ð Þ for a data
point x as follows:

ξ xð Þ¼ argmin
g � G

ℒ f ,g,πxð ÞþΩ gð Þ, ð16Þ

where G is a class of surrogate models used for explaining the black-box; ℒ � , � , �ð Þ is the fidelity function quantifying
the loss for g xð Þ approximating f �ð Þ within the neighborhood of x given by πx ; and Ω �ð Þ is a model complexity penalty.
Essentially, ℒ � , � , �ð Þ is a locality-aware loss function and, in practice, can be minimized in a model-agnostic manner,
that is, regardless of the model class of the original black-box. Usually, G is chosen to be a constrained class of intrinsi-
cally interpretable models (Section 4.2), for example, linear models or GAMs. Put simply, LIME trains many interpret-
able surrogate models to approximate a black-box model f �ð Þ locally. During training, instances are sampled around
each data point xi weighted by πxi . In addition to local explanations given by ξ �ð Þ, Ribeiro et al. (2016) introduce a pro-
cedure for obtaining a global understanding of the model f �ð Þ: given a limited budget, their algorithm picks several
explanations based on greedy submodular optimization (Krause & Golovin, 2014) and aggregates them into global vari-
able importances, similar to the random forest feature importance (Breiman, 2001).

DeepLIFT
Shrikumar et al. (2017) introduce an efficient method for disentangling contributions of inputs in a neural network—
deep learning important features (DeepLIFT). Compared to LIME, DeepLIFT is not model-agnostic since it is explicitly
tailored to neural networks; it also requires a reference, or baseline, data point. While in natural images an all-black
image is typically used as a baseline input, the choice of a reference might not be so trivial for more specialized datasets
and could affect the attribution (Srinivas & Fleuret, 2019).

Let t denote the activation of neuron of interest, usually one of the output neurons, and let η1,η2,…,ηK be intermedi-
ate neurons, potentially, from several layers, that suffice to compute t. Let Δt¼ t� t0 be the difference between t and a
reference output t0. We then seek to assign contribution scores CΔηiΔt so that they satisfy the so-called summation-to-
delta property:
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XK
i¼1

CΔηiΔt ¼Δt: ð17Þ

An intuitive interpretation of the equation above is that CΔηiΔt is the amount of “blame” for the difference in outputs
assigned to a difference in the activation of the i-th intermediate neuron. Since neurons η1,η2,…,ηK suffice to compute t,
differences in their activations Δη1,Δη2,…,ΔηK should suffice to explain the difference Δt. Notably, CΔηiΔt need not be 0
when ∂t

∂ηi
¼ 0 and, thus, can yield insights very different from those of gradient-based measures.

By analogy to the partial derivative, Shrikumar et al. (2017) define a multiplier as follows:

mΔηiΔt ¼
CΔηiΔt

Δt
: ð18Þ

In practice, we may not be necessarily interested in contributions of hidden units η1,η2,…,ηK . Therefore, the authors
instead consider the following definition of multipliers for input features, which is consistent with the summation-to-
delta property (Equation 17):

mΔxiΔt ¼
X
j

mΔxiΔηjmΔηjΔt, ð19Þ

Equation (19) is informally referred to as the chain rule for multipliers. The authors propose several propagation
rules for computing CΔηiΔt, which alongside the summation-to-delta and chain rule properties are then used to compute
mΔxiΔt . The choice of propagation rules is not set in stone, and more complex or specialized neural network architec-
tures require adaptations to the original DeepLIFT approach.

SHAP
A framework of Shapley additive explanations (SHAP) (Lundberg & Lee, 2017) builds on Shapley regression values
(Lipovetsky & Conklin, 2001) inspired by the game-theoretic concept of Shapley values (Hart, 1989). For the j-th fea-
ture, the Shapley regression value at data point x is given by

ϕj xð Þ¼
X

S ⊆ℱ ∖ jf g

jSj! jℱj� jSj�1ð Þ!
jℱj! f S [ jf g xS [ jf g

� �� f S xSð Þ
n o

, ð20Þ

(a) Rawimage (b) Attribution

FIGURE 5 An example of attribution in medical image classification. (a) A raw appendix ultrasound image from a pediatric patient

admitted to a hospital with suspected appendicitis. (b) The corresponding attribution map, overlaid with the raw image, produced using the

GradCam method (Selvaraju et al., 2017) for a deep neural network classifier predicting patients' diagnoses. Red color denotes higher

attribution values, that is, higher “importance” of pixels, whereas blue color denotes lower values. According to the attribution map, the

classifier concentrates on the region around the appendix.
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where ℱ¼ 1,…,pf g corresponds to the set of all input variables; xS is a feature vector composed of the components of
x that are in S ⊆ℱ; and f S �ð Þ is a model trained only on the features from the set S. Intuitively, ϕj xð Þ quantifies the
change in the output of the model resulting from adding the j-th variable to the set of features. Since there are exponen-
tially many subsets of ℱ ∖ jf g, in practice, Equation (20) does not have to be evaluated exactly and can be approximated
by sampling subsets randomly.

Lundberg and Lee (2017) propose a model-agnostic kernel approximation of Shapley regression values described
above. There also exist model-specific implementations of SHAP, for example, for decision trees and gradient boosted
decision trees (Lundberg et al., 2020). A compelling advantage of SHAP is the generality of its formulation and elegant
connections to statistical regression models and cooperative game theory. Moreover, both LIME and DeepLIFT
described before are special cases of the SHAP framework that resort to model-specific approximations of
Equation (20).

Follow-up work has explored other explanation methods derived from the concept of Shapley value and cooperative
game theory, for example, integrated gradients (Sundararajan et al., 2017), Shapley values for individual neurons
(Ghorbani & Zou, 2020), or the least core (Yan & Procaccia, 2021), based on a different solution concept. Rozemberczki
et al. (2022) provide an in-depth overview of the cooperative game theory and numerous applications of the Shapley
value in machine learning.

Integrated gradients
Sundararajan et al. (2017) introduce another attribution method—integrated gradients (IG). They are motivated by the
two following axioms. The sensitivity axiom posits that (i) if an input differs from a baseline in one feature and has a
prediction outcome different from the baseline, then the differing variable should be assigned a nonzero attribution
and that (ii) if the black-box model f �ð Þ is constant in some variable, then this variable should be given zero attribution.
The implementation invariance axiom states that attributions should be identical for two functionally equivalent black-
box models. Integrated gradients satisfy point (i) of sensitivity and the implementation invariance.

For the data point x, the j-th variable, and baseline x0, the integrated gradient is given by

IGf
j xð Þ¼ xj�x0,j

� �Z 1

α¼0

∂f x0þα x�x0½ �ð Þ
∂xj

dα: ð21Þ

Observe that IGf xð Þ is an integral of gradients along the straight path between x and x0. Similarly to DeppLIFT,
integrated gradients defined above satisfy the completeness property: if f �ð Þ is differentiable almost every-
where,

Pp
j¼1IG

f
j xð Þ¼ f xð Þ� f x0ð Þ.

Equation (21) can be generalized further by considering a non-straight path between x and x0. Path integrated gra-
dients are then defined for specified paths γ¼ γ1,…,γp

� �
: 0,1½ �!ℝp as

IGf ,γ
j xð Þ¼

Z 1

α¼0

∂f γ αð Þð Þ
∂γj αð Þ

∂γj αð Þ
∂α

dα: ð22Þ

Path integrated gradients are the unique attribution measure that fulfills points (i) and (ii) of sensitivity, implemen-
tation invariance, and completeness. Similarly to SHAP, path integrated gradients are rooted in cooperative game the-
ory and correspond to a generalization of Shapley values proposed by Aumann and Shapley (1974) in the context of
infinite games.

Among more recent developments, Erion et al. (2021) introduce expected gradients (EG), which require fewer hyper-
parameters than the measure in Equation (21):

EGf
j xð Þ¼x0�D,α�U 0,1ð Þ xj�x0,j

� �� ∂f x0þα x�x0½ �ð Þ
∂xj

� 
, ð23Þ

where D is the reference distribution, for example, x0 could be sampled from the training dataset with replacement,
and U 0,1ð Þ is the uniform distribution on the interval 0,1½ �. Observe that rather than using a single reference x0, EG
samples multiple references and approximates the integral as expectation. Moreover, Erion et al. (2021) investigate
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incorporating attributions into the training process by imposing a prior on the expected gradients of the neural net-
work. Attribution priors (Erion et al., 2021; Ross et al., 2017) facilitate the use of post hoc explanations, such as EG, to
make the neural network more interpretable, thus, building a connection with approaches described in Section 4.2.

Explaining individual neurons
Bau et al. (2020) investigate the role of individual neurons in discriminative and generative deep networks and demon-
strate that a sparse subset of the network's units often contributes the most to the output. Such insights facilitate a bet-
ter understanding of how representation learning occurs and how high-level concepts emerge within a neural network.
Several recent attribution measures have focused on providing more “fine-grained” explanations. In particular, some
measures attempt to quantify the importance of individual feature detectors within a neural network corresponding to
individual neurons, aka units, or whole channels or filters in convolutional networks (Dhamdhere et al., 2019; Leino
et al., 2018; Nam et al., 2020; Srinivas & Fleuret, 2019). As a concrete example, Ghorbani and Zou (2020) propose
Shapley-value-based importance for individual neurons.

Further remarks
Although attribution methods have become a well-established research topic, their general applicability and usefulness
have been scrutinized (Kim et al., 2018; I. E. Kumar et al., 2020; Rudin, 2019). For instance, Rudin (2019) argues that
explanation and, especially, attribution methods cannot be entirely faithful to the original black-box model and that
attributions do not provide any information about how the model works; they instead tell us what the model looks
at. I. E. Kumar et al. (2020) criticize Shapley-value-based explanations, such as described above, for their reliance on
the additivity axiom (Hart, 1989) and lack of human-groundedness and contrastiveness. Through experiments on semi-
synthetic datasets and a user study, Adebayo et al. (2022) demonstrate that post hoc explanation methods, in general,
and particularly attributions, often fail to detect spurious correlation captured by the black-box model being explained.
Thus, while attribution techniques are an easy-to-use and understand model diagnostic, their effectiveness is limited by
the scope of their definitions and assumptions.

4.3.2 | Concept-based explanations

Explanation methods described so far mainly focused on elucidating the relationship between the input variables and
the network's output. Arguably, explanations expressed w.r.t. the input space are not always straightforward. For exam-
ple, individual pixels in an attribution map (Section 4.3.1) are meaningless. The user must associate the map with
larger, semantically meaningful regions in the image to make sense of the attribution. Moreover, sometimes attribution
methods might fail to explain the relationship clearly, for example, consider the case where the ground-truth explana-
tion for classification is the object's color. One way to address such limitations is to explain the model's predictions in
terms of high-level, human-understandable concepts, similar to the concept bottlenecks (Section 4.2.11). For instance,
for the medical image in Figure 5, high-level concepts explaining the classification might be the visibility and diameter
of the inflamed appendix.

Kim et al. (2018) propose quantitative testing with concept activation vectors (TCAV)—a method for quantifying
the influence of a high-level concept on the representations learnt by a neural network post hoc. Let us consider the fol-
lowing decomposition of k-th output unit of a neural network classifier given by f k xð Þ¼ gk hl xð Þ� �

, where hl :X !ℝdl

refers to the activation vector of the l-th layer. Given a binary concept C� 0,1f g, for the layer l of the neural network
f �ð Þ, input x �X , and class y¼ k, the conceptual sensitivity (CS) is defined as

CSfC,k,l xð Þ¼ ∂gk hl xð Þ� �
∂vlC

¼rgk hl xð Þ� �Τ
vlC, ð24Þ

where vlC �ℝdl is a concept activation vector (CAV)—a unit-norm vector orthogonal to the linear decision boundary of
the classifier in the output space of hl �ð Þ trained to differentiate between the categories of the concept C. Notably, to
compute the CAV and evaluate conceptual sensitivity, a sample of data points labeled w.r.t. C is required. Conse-
quently, conceptual sensitivities can be aggregated into the TCAV score given by
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TCAVf
C,k,l ¼

jx �Sk :CS
f
C,k,l xð Þ>0j

jSkj , ð25Þ

where Sk is a set of inputs belonging to the k-th class. Intuitively, TCAVf
C,k,l quantifies the proportion of inputs from

class k for which the activations of the l-th layer of f �ð Þ are positively influenced by the concept C. The statistic in
Equation (25) can be then used for hypothesis testing, for example, to decide if a specific concept has a significant influ-
ence on the network f �ð Þ.

TCAV score (Equation 25) only provides a global explanation, that is, it indicates if concept C influences the classi-
fier across the entire dataset. Schrouff et al. (2021) combine the definition of the conceptual sensitivity (Equation 24)
with the integrated gradients (Equation 21) to produce local concept-based explanations, referred to as integrated con-
ceptual sensitivity (ICS):

ICSfC,k,l xð Þ¼ hl xð Þ�h0
� �ΤZ 1

α¼0
rvlC

gk h0þα hl xð Þ�h0

 �� �

dα, ð26Þ

where h0 �ℝdl denotes a reference activation vector. Note that, unlike the integrated gradients, ICS performs integra-
tion in the activation space of the network and uses the directional derivative, similar to the TCAV (cf. Equation 24). Another
limitation of the TCAV is that, similar to concept bottlenecks, the concepts of interest have to be known, and the dataset must
be at least partially labeled w.r.t. the concepts. To this end, some works have focused on the automatic discovery of concepts
from neural network activations, for example, methods introduced by Ghorbani et al. (2019) and Yeh et al. (2020).

4.3.3 | Symbolic metamodels

Section 4.2.10 described symbolic regression as an approach to learning interpretable mathematical expressions from
raw data. Similarly to linear models and GAMs in LIME (Section 4.3.1), symbolic regression can be used for surrogate
modeling of already learnt opaque predictive models (Alaa & van der Schaar, 2019; Crabbe et al., 2020). For instance,
Alaa and van der Schaar (2019) propose an elegant parameterization of the symbolic regression problem
(cf. Equation 15) that allows for optimization by gradient descent, in contrast to genetic programming and simulated
annealing approaches that search through a discrete solution space.

According to Alaa and van der Schaar (2019), symbolic metamodeling reduces to the following:

min
g � G

ℒ g, fð Þ¼ min
g � G

Z
X

g xð Þ� f xð Þð Þ2dx, ð27Þ

where ℒ � , �ð Þ is a metamodeling loss, and G is a class of succinct mathematical expressions that serve as a
surrogate for the black-box model f �ð Þ. The authors introduce a parameterization of G that makes the optimization
problem in Equation (27) “easier”: given parameterization G¼ G � ; θð Þ : θ�Θf g, the problem above
becomes min θ � Θℒ G � ; θð Þ, f �ð Þð Þ.

By Kolmogorov–Arnold superposition theorem (Arnold, 1957; Kolmogorov, 1956), assuming data points x �ℝp, sur-
rogate model g �ð Þ can be rewritten in the following form:

g xð Þ¼
Xr
i¼0

gouti

Xp
j¼1

gini,j xj
� � !

, ð28Þ

where gini,j �ð Þ and gouti �ð Þ are continuous basis functions. Equation (28) encapsulates a fairly broad class of functions.
For instance, if r¼ 1, g �ð Þ becomes a GAM (Section 4.2.3). Most importantly, the representation above yields parame-
terization G x; θð Þ¼G x; gini,j

n o
i,j
, gouti

� �
i

� �
. The basis functions themselves can be parameterized by representing them

as Meijer G-functions (Meijer, 1936) that are closed under differentiation. The closure property allows searching
through G efficiently using the gradient descent procedure.
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Symbolic metamodeling (Alaa & van der Schaar, 2019; Crabbe et al., 2020) alongside symbolic regression (Jin
et al., 2019; Stinstra et al., 2007; Udrescu & Tegmark, 2020) is a compelling alternative to attribution methods
(Section 4.3.1), especially when we seek a parsimonious analytical representation of a black-box function. The parame-
terization proposed by Alaa and van der Schaar (2019) is a helpful reformulation of the problem that benefits from the
recent advances in automatic differentiation.

4.3.4 | Counterfactual explanations

In some applications, it might be of paramount importance to provide human-friendly explanations (Carvalho
et al., 2019) that are understandable to a broad nonspecialist audience. Techniques discussed so far mainly addressed
the question “Why this prediction was made?” By contrast, counterfactual explanations try to answer the question “Why
was this prediction made instead of another?” These techniques produce contrastive and actionable local explanations
that can be helpful in a wide range of real-world settings, for example, when suggesting lifestyle changes to a patient to
reduce her risks or providing reasons for the low creditworthiness of a company.

Wachter et al. (2017) formalize counterfactual explanations in the context of ML. To find a counterfactual explanation x0

for a data point x,yð Þ and a black-box model f �ð Þ, the authors propose solving the following optimization problem:

min
x0 � X

d x,x0ð Þþ λℒ f x0ð Þ,y0ð Þ, ð29Þ

where d � , �ð Þ is an appropriate distance function; y0 is chosen to be meaningfully different from y, for example, y0 could
represent a desirable classification outcome; the loss ℒ f x0ð Þ,y0ð Þ quantifies how “different” the model's output is for x0

from the y0 chosen, for example, one could use MSE for regression or hinge loss for classification; λ is a parameter con-
trolling the slackness on the constraint f x0ð Þ¼ y0. The problem above is loosely reminiscent of generating adversarial
perturbations (Moosavi-Dezfooli et al., 2017): perturbations to the original data point x are encouraged to be sparse by
penalizing d x,x0ð Þ.

Mothilal et al. (2020) extend the framework above to multiple diverse counterfactual explanations. In particular, for
a data point x, explanations c1,…,cK are found by solving the optimization problem below:

min
c1,…,cK

1
K

XK
k¼1

ℒ f ckð Þ,y0ð Þþ λ1
K

XK
k¼1

d x,ckð Þ� λ2det Sð Þ, ð30Þ

where Sk,l ¼ 1
1þd ck ,clð Þ, and, thus, the term det Sð Þ quantifies diversity among explanations. In addition, Mothilal et al.

(2020) propose an array of quantitative evaluation metrics for counterfactual explanation techniques, such as
(i) validity quantifying how many of the proposed explanations are actual counterfactuals; (ii) proximity measuring the
“closeness” of explanations to the original data point; (iii) sparsity quantifying how sparse the perturbations of x are;
and (iv) diversity evaluating how diverse the proposed explanations are.

Counterfactual explanation methods above rely on the gradient descent and, thus, assume that the black-box model
f �ð Þ is differentiable. Karimi, Barthe, Balle, and Valera (2020) generalize this framework, introducing model-agnostic
counterfactual explanations (MACE). They transform the original optimization problem into a sequence of Boolean
satisfiability problems and leverage powerful satisfiability modulo theory solvers to solve these. A significant advantage
of MACE is its complete agnosticism to the choice of the black-box model f �ð Þ or distance function d � , �ð Þ and its abil-
ity to incorporate additional plausibility constraints that allow injecting domain-specific knowledge.

The problem of counterfactual explanation naturally admits generative modeling as an approach to producing coun-
terfactuals. Recently, several papers have utilized deep generative models (Chang et al., 2019; S. Liu et al., 2019;
Mahajan et al., 2019) to solve problems similar to the ones considered by Wachter et al. (2017) and Mothilal et al.
(2020). Chang et al. (2019) introduce fill-in the dropout (FIDO) saliency maps based on counterfactual generation with
masking for explaining image classifiers. S. Liu et al. (2019) leverage GANs to generate minimal change counterfactual
examples for image classifiers. Last but not least, Mahajan et al. (2019) propose a VAE-based counterfactual generative
model that focuses on feasibility and preservation of causal constraints with regularization derived from a structural
causal model (Pearl, 2010).
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 19424795, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1493 by E
th Z

ürich E
th-B

ibliothek, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Another perspective on counterfactual explanations is algorithmic recourse, surveyed in detail by Karimi, Barthe,
Schölkopf, and Valera (2020). Algorithmic recourse focuses on explaining the decisions and recommending further
actions to “individuals who are unfavourably treated by automated decision-making systems” (Karimi, Barthe,
Schölkopf, & Valera, 2020). Karimi, Schölkopf, and Valera (2020) criticize counterfactual explanations for the lack of
actionability and provide a causal perspective of algorithmic recourse by considering interventions instead of
explanations. To avoid infeasible or costly recommendations resulting from naïve counterfactuals, Karimi, Schölkopf,
and Valera (2020) propose finding minimal cost structural interventions resulting in a favorable outcome. While this
approach certainly offers an exciting and, possibly, more user-centered perspective, the core limitation of algorithmic
recourse is the unrealistic assumption of a known causal structure (Karimi, Schölkopf, & Valera, 2020; Karimi, von
Kügelgen, Schölkopf, & Valera, 2020).

5 | CONCLUDING REMARKS

Interpretable and explainable machine learning is still a young and active research area. With the recent rapid advances
in designing highly performant predictive models and the inevitable infusion of machine learning into different applica-
tion domains, algorithmic decision-making will have far-reaching consequences. Therefore, algorithms need to be
understood and trusted by human end-users. In this overview, we surveyed interpretable machine learning models and
explanation methods, described the goals, desiderata, and inductive biases behind these techniques, motivated their rel-
evance in several fields of application, illustrated possible use cases, and discussed their evaluation.

Although a lack of universal and rigorous definitions for interpretability or explainability may seem like an impedi-
ment, it might be impossible or even harmful to define interpretability due to the sheer breadth of contexts and applica-
tions that call for it. Nevertheless, interpretable and explainable ML could benefit from better empirical research
practices like most developing research areas, as many works still rely on purely qualitative or even anecdotal evidence.
The development of standardized evaluation criteria and benchmarks could make research efforts reproducible and
more focused. Last but not least, meaningful adaptations of the discussed methods to “real-world” machine learning
systems and data analysis problems largely remain a matter for the future. For widespread and fruitful use of interpret-
able and explainable ML, stakeholders need to be involved in the discussion. Interdisciplinary collaboration on equal
terms between machine learning researchers and stakeholders from application domains, such as medicine, natural sci-
ences, and law, is the next logical step in the evolution of interpretable and explainable ML.
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MARCINKEVIČS and VOGT 25 of 32

 19424795, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
idm

.1493 by E
th Z

ürich E
th-B

ibliothek, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-8901-5062
https://orcid.org/0000-0001-8901-5062


RELATED WIREs ARTICLES
Causability and explainability of artificial intelligence in medicine
Interpretability of machine learning-based prediction models in healthcare
A historical perspective of explainable artificial intelligence

REFERENCES
Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–

52160. https://doi.org/10.1109/access.2018.2870052
Adebayo, J., Muelly, M., Abelson, H., & Kim, B. (2022). Post hoc explanations may be ineffective for detecting unknown spurious correlation.

In International conference on learning representations. OpenReview.net.
Adel, T., Ghahramani, Z., & Weller, A. (2018). Discovering interpretable representations for both deep generative and discriminative models.

In Proceedings of the 35th international conference on machine learning (Vol. 80, pp. 50–59). PMLR.
Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich, B., Caruana, R., & Hinton, G. E. (2021). Neural additive models: Interpretable

machine learning with neural nets. In Advances in neural information processing systems (Vol. 34, pp. 4699–4711). Curran Associates.
Alaa, A. M., & van der Schaar, M. (2019). Demystifying black-box models with symbolic metamodels. In Advances in neural information

processing systems 32 (pp. 11304–11314). Curran Associates.
Al-Shedivat, M., Dubey, A., & Xing, E. (2020). Contextual explanation networks. Journal of Machine Learning Research, 21(194), 1–44.
Alvarez-Melis, D., & Jaakkola, T. S. (2018). Towards robust interpretability with self-explaining neural networks. In Advances in neural infor-

mation processing systems 31: Annual conference on neural information processing systems (pp. 7786–7795). Curran Associates.
Amir Haeri, M., Ebadzadeh, M. M., & Folino, G. (2017). Statistical genetic programming for symbolic regression. Applied Soft Computing, 60,

447–469. https://doi.org/10.1016/j.asoc.2017.06.050
Ancona, M., Ceolini, E., Öztireli, C., & Gross, M. (2019). Gradient-based attribution methods. In W. Samek, G. Montavon, A. Vedaldi, L. K.

Hansen, & K.-R. Müller (Eds.), Explainable AI: Interpreting, explaining and visualizing deep learning (pp. 169–191). Springer International
Publishing. https://doi.org/10.1007/978-3-030-28954-6

Anjomshoae, S., Najjar, A., Calvaresi, D., & Främling, K. (2019). Explainable agents and robots: Results from a systematic literature review.
In Proceedings of the 18th international conference on autonomous agents and multiagent systems (pp. 1078–1088). International Founda-
tion for Autonomous Agents and Multiagent Systems.

Arcadu, F., Benmansour, F., Maunz, A., Willis, J., Haskova, Z., & Prunotto, M. (2019). Deep learning algorithm predicts diabetic retinopathy
progression in individual patients. npj Digital Medicine, 2(1), 92. https://doi.org/10.1038/s41746-019-0172-3

Arnold, V. I. (1957). On functions of three variables. In Proceedings of the USSR Academy of Sciences (pp. 679–681). USSR Academy of
Sciences.

Arras, L., Osman, A., & Samek, W. (2020). Ground truth evaluation of neural network explanations with CLEVR-XAI. arXiv:2003.072e58.
Aumann, R., & Shapley, L. (1974). Values of non-atomic games. Princeton University Press. https://doi.org/10.1515/9781400867080
Azodi, C. B., Tang, J., & Shiu, S.-H. (2020). Opening the black box: Interpretable machine learning for geneticists. Trends in Genetics, 36(6),

442–455. https://doi.org/10.1016/j.tig.2020.03.005
Barber, R. F., & Candès, E. J. (2015). Controlling the false discovery rate via knockoffs. The Annals of Statistics, 43(5), 2055–2085. https://doi.

org/10.1214/15-AOS1337
Barocas, S., Hardt, M., & Narayanan, A. (2019). Fairness and machine learning. http://www.fairmlbook.org
Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R.,

Chatila, R., & Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012

Bau, D., Zhu, J.-Y., Strobelt, H., Lapedriza, A., Zhou, B., & Torralba, A. (2020). Understanding the role of individual units in a deep neural
network. Proceedings of the National Academy of Sciences, 117(48), 30071–30078. https://doi.org/10.1073/pnas.1907375117

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of
the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Bhatt, U., Xiang, A., Sharma, S., Weller, A., Taly, A., Jia, Y., Ghosh, J., Puri, R., Moura, J. M. F., & Eckersley, P. (2020). Explainable machine
learning in deployment. In Proceedings of the 2020 conference on fairness, accountability, and transparency (pp. 648–657). Association for
Computing Machinery. https://doi.org/10.1145/3351095.3375624

Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., & Parascandolo, G. (2021). Neural symbolic regression that scales. In Proceedings of the 38th
international conference on machine learning (Vol. 139, pp. 936–945). PMLR.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Burkart, N., & Huber, M. F. (2021). A survey on the explainability of supervised machine learning. Journal of Artificial Intelligence Research,

70, 245–317. https://doi.org/10.1613/jair.1.12228
Byrne, R. M. J. (2019). Counterfactuals in explainable artificial intelligence (XAI): Evidence from human reasoning. In Proceedings of the

twenty-eighth international joint conference on artificial intelligence. International Joint Conferences on Artificial Intelligence
Organization. https://doi.org/10.24963/ijcai.2019/876

Candès, E., Fan, Y., Janson, L., & Lv, J. (2018). Panning for gold: ‘Model-X’ knockoffs for high dimensional controlled variable selection.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(3), 551–577. https://doi.org/10.1111/rssb.12265

26 of 32 MARCINKEVIČS and VOGT
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