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Background: Given the absence of consolidated and standardized international

guidelines for managing pediatric appendicitis and the few strictly data-driven studies

in this specific, we investigated the use of machine learning (ML) classifiers for predicting

the diagnosis, management and severity of appendicitis in children.

Materials and Methods: Predictive models were developed and validated on a

dataset acquired from 430 children and adolescents aged 0-18 years, based on a range

of information encompassing history, clinical examination, laboratory parameters, and

abdominal ultrasonography. Logistic regression, random forests, and gradient boosting

machines were used for predicting the three target variables.

Results: A random forest classifier achieved areas under the precision-recall curve

of 0.94, 0.92, and 0.70, respectively, for the diagnosis, management, and severity of

appendicitis. We identified smaller subsets of 6, 17, and 18 predictors for each of targets

that sufficed to achieve the same performance as the model based on the full set of

38 variables. We used these findings to develop the user-friendly online Appendicitis

Prediction Tool for children with suspected appendicitis.

Discussion: This pilot study considered the most extensive set of predictor and target

variables to date and is the first to simultaneously predict all three targets in children:

diagnosis, management, and severity. Moreover, this study presents the first ML model

for appendicitis that was deployed as an open access easy-to-use online tool.

Conclusion: ML algorithms help to overcome the diagnostic and management

challenges posed by appendicitis in children and pave the way toward a more

personalized approach to medical decision-making. Further validation studies are

needed to develop a finished clinical decision support system.
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INTRODUCTION

Appendicitis is among the commonest childhood diseases,
accounting for a third of admissions for abdominal pain (1).
Life-time risk ranges from 6 to 9%, and incidence is highest
between 10 and 19 years of age (2). Perforation rates are
significantly higher in preschool children than in older children
or adults (3).

Diagnosis remains essentially clinical, backed by laboratory
data and imaging. In a pooled analysis of serum biomarkers
for diagnosing acute appendicitis and perforation, Acharya
et al. reported areas under the receiver operating characteristic
(AUROC) of 0.75 and 0.69, respectively, for the white blood
cell (WBC) count and 0.80 and 0.78 for C-reactive protein
(CRP) (4). Despite increasing research there remains no specific
biomarker for predicting acute appendicitis in clinical practice
(4, 5). Abdominal and, specifically, appendix ultrasonography
(US) is the standard imaging modality in children, being low-
cost, non-invasive and repeatable, but it remains operator-
dependent. Reported sensitivities and specificities for US-
based diagnosis range widely: from 87 to 100%, and from
15 to 95% (6). The scores most frequently used to assist
physicians in risk-stratifying children with abdominal pain
are the Alvarado Score (AS) and Pediatric Appendicitis Score
(PAS) (Supplementary Table 1) (7, 8). They may help to
exclude appendicitis in an emergency setting (AUROC 0.84
for AS ≤ 3 and PAS ≤ 2) (9), but neither is in widespread
routine use.

There are still no consistent and widely used international
guidelines for managing acute appendicitis in children.
Minimally invasive appendectomy remains the standard
treatment of acute appendicitis despite increasing evidence of
similar results being achieved by conservative therapy with
antibiotics (10, 11), not to mention the reports of spontaneous
resolution in uncomplicated cases suggesting that an antibiotic-
free approach might be effective in selected school-age children
(1, 12).

Machine learning (ML) enhances the early detection and
monitoring of multiple medical conditions (13). Supervised
learning models leverage large amounts of labeled data to
extract complex statistical patterns predictive of a target
variable, often achieving superhuman performance levels
(14). In this study we applied ML to achieve three outcomes:
diagnosing appendicitis in children with abdominal pain;
guiding management (conservative without antibiotics
vs. operative); and risk stratifying severity (gangrene and
perforation). Our aim was to develop and validate a pilot
ML tool to support physicians in diagnosing appendicitis at
presentation, assessing severity, and deciding management.
The purpose of this paper is not to develop a finished
clinical decision support system, but rather to present a
pilot study for a promising research prototype based on machine
learning. To the best of our knowledge, this is the first study
using ML to simultaneously predict diagnosis, conservative
vs. operative management, and severity in children with
suspected appendicitis.

MATERIALS AND METHODS

Data Acquisition
The cohort study included all children and adolescents aged
0-18 years admitted with abdominal pain and suspected
appendicitis to the Department of Pediatric Surgery at the
tertiary Children’s Hospital St. Hedwig in Regensburg, Germany,
over the 3-year period from January 1, 2016 to December
31, 2018. Non-inclusion criteria were prior appendectomy,
abdominal conditions such as chronic inflammatory bowel
disease or intestinal duplication, simultaneous appendectomy,
and treatment with antibiotics for concurrent disease such as
pneumonia, resulting in a final total of 430 patients (Table 1).
The study was approved by the University of Regensburg
institutional review board (no. 18-1063-101) which also waived
informed consent to routine data analysis. For patients followed
up after discharge, informed consent was obtained from
parents or legal representatives. All methods were performed
in accordance with the relevant guidelines and regulations.
Conservative management was defined as intravenous fluids,
enemas, analgesics, and clinical/US monitoring without
antibiotics in an inpatient setting. For patients with criteria
for simple appendicitis presenting clinical and sonographic
improvement, non-operative therapy was maintained, otherwise
they underwent operation. Appendectomy was laparoscopic
in 88% of cases and traditional in 12%. Histological and
intra-operative findings were assessed. The routine procedure
for children and adolescents with suspected appendicitis is
summarized in Supplementary Figure 1.

Data Description
Our analysis considered predictive models for three binary
response variables:

• diagnosis: appendicitis (n = 247, 57.21%) and no appendicitis
(n = 183, 42.79%)

• management: surgical (n = 165, 38.37%) and conservative
(n = 265, 61.63%)

• severity: complicated (n = 51, 11.86%) and uncomplicated
appendicitis or no appendicitis (n = 379, 88.14%).

TABLE 1 | Counts of patients in different diagnosis, management, and severity

categories.

Appendicitis:

Uncomplicated/

Complicated

No

appendicitis:

Uncomplicated/

Complicated

Total:

Uncomplicated/

Complicated

Surgical

management:

114/51 0/0 114/51

Conservative

management:

82/0 183/0 265/0

Total: 196/51 183/0 379/51

Rows correspond to different management categories; columns correspond to different

diagnoses. Each cell contains counts of patients with uncomplicated appendicitis

or without appendicitis and with complicated appendicitis (separated by “/”) in the

corresponding subgroup.
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The “appendicitis” category included both acute and subacute
cases, while “surgical” comprised primary and secondary surgical
treatment. It is important to note that we could not confirm
the diagnosis in every patient: histology was only possible in
patients who underwent surgery. Conservatively treated patients
were retrospectively assigned the “appendicitis” label only if
they had AS and/or PAS values ≥ 4 and an appendix diameter
≥ 6mm. Diagnosis was a proxy for confirmed disease status.
Patients with the above criteria for appendicitis who were first
treated conservatively (n = 86) were contacted at least 6 months
after discharge (mean 28 months). We reached 61 individuals,
five of whom had since undergone appendectomy and were
therefore included in the surgical group. Appendicitis was
classified as “uncomplicated” in all conservatively treated cases.
The “uncomplicated” category also included patients without
appendicitis since none had complications during treatment; it
was almost 8 times larger than the “complicated” category. To
address this major imbalance, we investigated the use of cost-
sensitive classification models, e.g., by introducing prior category
probabilities in random forest models (15), but performance
was not markedly improved. The other two category pairs were
reasonably balanced. Table 1 contains detailed counts of patients
within different diagnosis, management, and severity categories.

Our analysis considered 38 predictor variables including
patient and US data. Variables were continuous, binary, and
categorical. All weremeasured before treatment was assigned and
none represent intraoperative findings. Supplementary Table 2

contains explanations of all 38 predictor variables included in the
model development and validation.

We computed summary statistics for patient subgroups, based
on the three responses. Statistical tests for differences between
subgroups were performed in the R programming language
(version 3.6.2) (16). Summary and test statistics were based
on non-missing data only. Chi-squared tests of independence
were used for discrete variables and unpaired two-sided Mann-
WhitneyU-tests for continuous variables; p-values were adjusted
formultiple comparisons usingHommel’s method (17). A level of
α = 0.05 was chosen for statistical significance. Predictors with
several categories were binarized prior to the chi-squared test.

Preprocessing
The dataset contained missing values. As a preprocessing step,
we performed missing data imputation using the k-nearest
neighbors (k-NN) (with k = 5) method based on Gower distance
(18), as implemented in the R VIM package (19). This method
imputes missing variables in every instance based on values
occurring within the proximity given by Gower distance for
continuous, categorical, and ordered variables (19). To avoid data
leakage and the introduction of spurious associations between
predictor and response variables, we performed the imputation
without response variables and separately for train and test sets.

Machine Learning
To predict the above response variables, we trained and
validated three different ML models for classification in the R
programming language (version 3.6.2) (16):

• logistic regression (LR), as implemented in the R glmnet
package (20);

• random forest (RF) (21), as implemented in the R
randomForest package (15);

• generalized boosted regression model (GBM) (22), as
implemented in the R gbm package (23).

LR is only capable of learning a linear decision boundary to
differentiate between classes, whereas the RF and GBM models
are non-linear ensemble classification methods and can thus
potentially learn more complex patterns. Both RF and GBM
achieve this by training many simple classifiers and consequently
aggregating their predictions into a single estimate.

To identify which variables were crucial for predictive
performance, we compared classifiers trained on the following
predictor subsets:

• full set of 38 predictor variables
• without US data (“US-free”)
• without the “peritonitis/abdominal guarding” variable
• without US data or the “peritonitis/abdominal

guarding” variable.

It was interesting to investigate whether responses could be
predicted without including the US variables that might be
operator-dependent or unavailable in emergencies (24, 25).
We singled out the “peritonitis/abdominal guarding” variable
because detection can be unreliable, requiring an experienced
examiner; our analysis considered it under three subcategories:
(i) no peritonitis/abdominal guarding, (ii) localized, and
(iii) generalized.

Evaluation Metrics

To evaluate and compare predictive models, we performed 10-
fold cross-validation (CV) (26), using the k-NN method for
imputing missing values separately for train and test sets. Ten-
fold cross-validation is a standard procedure for the evaluation
of ML models, wherein the model is repeatedly trained on 90%
of data and tested on 10% of withheld data for 10 disjoint test
folds. Predictive performance was assessed using AUROC and
area under the precision-recall (AUPR) curve (Figure 1) (27).
AUPR is particularly informative for classification problems with
extreme class imbalance (27). It was therefore more appropriate
for comparing models predicting appendicitis severity. We
compared model performance using two-sided 10-fold cross-
validated paired t-tests at a significance level α = 0.05 (28). In
addition to AUROC and AUPR, sensitivity, specificity, negative
and postive predictive values of the classifiers were evaluated.

Variable Selection

In a clinical setting, variables can be systemically missing at test
time. We therefore also examined the importance of predictor
variables in case the number of predictors used by classifiers
could be reduced without compromising their performance. Both
RF and GBM provide measures of variable importance (15, 21,
23). We examined the averages of class-specific measures of
variable importance given by the mean decrease in RF accuracy
(15). We trained random forests on 300 bootstrap resamples of
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FIGURE 1 | Machine learning analysis schematic. Machine learning models, namely logistic regression (LR), random forest (RF), and generalized boosted regression

model (GBM), based on various sets of predictor variables, are evaluated using areas under receiver operating characteristic (AUROC) and precision-recall (AUPR)

curves in the 10-fold cross-validation procedure. Ten-fold cross-validation is a standard procedure for evaluating the performance of predictive ML models wherein the

model is trained on 90% of the data and tested on the remaining 10% repeatedly for 10 disjoint test folds. In our analysis, missing value imputation was performed

separately for train and test sets using the k-nearest neighbors (k-NN) method.

the data and used boxplots to visualize the distributions of the
importance values obtained (29).

In addition, we cross-validated a variable selection procedure
based on the RF importance measure to determine the minimal
number of variables that could be used without compromising
predictive performance. The procedure can be summarized as
follows. For number of predictors q from 1 to 38, repeat:

1. Train full RF modelMfull (all predictor variables included) on
the train set. Retrieve variable importance values.

2. Train RF model Mq based on q predictors with the highest
importance values, on the train set.

3. Evaluate AUROC and AUPR ofMq on the test set.
4. Repeat steps 1-3 for all 10 folds in CV.

This procedure evaluates the performance of random forest
classifiers that use varying numbers of predictors chosen on the
basis of importance values.

Finally, we examined which variable subsets were chosen
consistently, for each q. For q from 1 through 38, we trained
random forest classifiers on 300 bootstrap resamples of the data
and counted how many times each predictor was among the
q most important variables. In this way, we could assess the
variability of a set of q most important predictors, rather than
provide a single selection which could be unstable because based
on only one replication of the experiment.

RESULTS

Distributions of several predictors differed significantly (at
level α = 0.05) for all three responses, namely, AS, PAS,

appendix diameter, body temperature, WBC count, neutrophil
percentage, CRP, and peritonitis/abdominal guarding. These
variables had previously been identified as useful in predicting
appendicitis (8, 30–32). Table 2 and Supplementary Tables 3, 4
show the summary statistics and statistical test results for patient
subgroups based on response variables. In general, the descriptive
statistics suggested that the data featured strong associations
between some predictors and responses.

Table 3 shows the 10-fold CV results for the different
ML classifiers for predicting diagnosis, management, and
severity. For diagnosis classification, full RF (average AUROC:
0.96, average AUPR: 0.94) and GBM (average AUROC: 0.96,
average AUPR: 0.94) models significantly outperformed logistic
regression (average AUROC: 0.91, average AUPR: 0.88). AUROC
and AUPR p-values were 0.002 and 0.006 for RF, and 0.007
and 0.03 for GBM. This suggests benefit from using non-linear
classification methods for predicting a diagnosis of appendicitis.
The full GBM and RF classifiers performed equally with respect to
both evaluation metrics. All ML models performed considerably
better than the random classifier, that is, a random guess. On
average, classifiers that used the full set of predictors had higher
AUROCs and AUPRs than the clinical baselines, such as AS,
PAS, and suspected diagnosis, given by hospital specialists. Based
on the CV results, US input is crucial for accurately diagnosing
appendicitis because average AUROC and AUPR degraded in
all models when it was absent. Peritonitis had less influence on
prediction quality.

For predicting management, the full RF and GBM models
had the highest average AUROC (0.94), while the full GBM
had the highest average AUPR (0.93). Both non-linear methods
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TABLE 2 | Dataset description for patients with and without appendicitis.

Variable Appendicitis

(n = 247)

No

appendicitis

(n = 183)

P-value

Age, years 11.48 [9.18,

13.29]

12.10 [9.57,

14.46]

0.6

Male sex, % 58.13 47.83 0.5

Height, cm 149.1 [137.5,

162.0]

152.2 [139.6,

164.0]

0.8

Weight, kg 39.75 [31.00,

52.75]

47.10 [32.48,

57.08]

0.4

Body mass index (BMI), kg/m2 17.84 [15.72,

20.55]

18.90 [15.95,

22.39]

0.3

Alvarado score, pts 7 [5, 8] 4 [3, 6] ≤0.001

Pediatric appendicitis score, pts 5 [4, 7] 4 [3, 5] ≤0.001

Peritonitis/abdominal guarding, % 61.38 7.61 ≤0.001

Migration of pain, % 30.89 18.48 0.09

Tenderness in right lower quadrant

(RLQ), %

97.97 95.63 1.0

Rebound tenderness, % 40.98 25.68 ≤0.05

Cough tenderness, % 32.65 19.57 0.06

Psoas sign, % 27.85 33.91 1.0

Nauseous/vomiting, % 62.20 48.37 0.1

Anorexia, % 31.71 25.68 1.0

Body temperature, ◦C 37.75 [37.20,

38.20]

37.20 [36.80,

37.85]

≤0.001

Dysuria, % 3.45 7.82 0.7

Abnormal stool, % 28.40 27.07 1.0

White blood cell count, 103/µl 13.80 [10.68,

17.40]

8.80 [7.00,

11.90]

≤0.001

Neutrophils, % 78.95 [70.40,

84.17]

61.50 [52.35,

77.55]

≤0.001

C-reactive protein, mg/l 15.00 [4.00,

46.00]

1.00 [0.00,

13.00]

≤0.001

Ketones in urine, % 44.94 31.54 0.5

Erythrocytes in urine, % 23.42 20.81 1.0

White blood cells in urine, % 12.03 12.75 1.0

Visibility of appendix, % 86.53 34.97 ≤0.001

Appendix diameter, mm 8.00 [7.00,

10.00]

5.00 [4.05,

5.28]

≤0.001

Free intraperitoneal fluid, % 52.56 31.84 ≤0.01

Irregular appendix layers, % 41.74 11.11 0.1

Target sign, % 67.37 9.10 ≤0.001

Appendix perfusion, % 74.47 12.50 ≤0.05

Surrounding tissue reaction, % 86.01 16.22 ≤0.001

Pathological lymph nodes, % 62.20 74.70 0.8

Mesenteric lymphadenitis, % 79.69 81.08 1.0

Thickening of the bowel wall, % 55.77 19.44 ≤0.05

Ileus, % 25.00 0.00 0.17

Coprostasis, % 34.15 42.42 1.0

Meteorism, % 59.18 84.48 0.1

Enteritis, % 16.67 69.57 ≤0.05

Distributions of variables are presented as either medians with interquartile ranges (in

square brackets) or percentages. For significant differences, p-values are reported in bold

as “≤0.001,” “≤0.01” or “≤0.05” (at significance level α = 0.05).

significantly outperformed logistic regression (average AUROC:
0.90, average AUPR: 0.88). AUROC andAUPR p-values were 0.01
and 0.06 (non-significant) for RF, and 0.02 and 0.03 for GBM.
All models had considerably better average AUROCs and AUPRs
than the random classifier. Based on the CV results, peritonitis
is a very important variable for predicting management. Average
model performance dropped considerably when removing this
variable. US findings did not affect prediction quality as much
as when diagnosing appendicitis.

As for appendicitis severity, US-free logistic regression
achieved the highest average AUROC (0.91) alongside US-free
GBM, while full-set RF achieved the highest average AUPR (0.70)
(Table 3). Although all models performed considerably better
than the random classifier, complicated appendicitis appeared
harder to predict than either diagnosis or management. The
AUPRs were much lower, and all models had high variances
across the folds. This could be due to the very low prevalence
of complicated appendicitis (12% of all patients). There was
little gain in performance from using non-linear classification
methods. The differences in AUROC and AUPR between RF,
GBM, and (US-free) logistic regression were non-significant.
AUROC and AUPR p-values were 0.94 and 0.97 for RF, and 0.76
and 0.58 for GBM. US input had almost no effect on average
classifier performance whereas peritonitis was important and
its exclusion markedly decreased AUROC and AUPR values in
all models.

We also evaluated model sensitivities, specificities, and
negative and positive predictive values (NPV/PPV). Tables 4,
5 contain results of the 10-fold CV for all three responses.
In this analysis, a threshold of 0.5 was used to predict labels.
When incorporating any of these models into clinical decision-
making, the threshold will have to be chosen based on the desired
sensitivity and specificity. For diagnosis, full non-linear classifiers
achieved better combinations of sensitivity, specificity, NPV, and
PPV than the clinical baseline (AS or PAS ≥ 4 and appendix
diameter ≥ 6mm). Similar to the evaluation in Table 3, on
average, non-linear classifiers performed noticeably better than
logistic regression in predicting diagnosis.

To identify the most crucial predictive variables, we trained
RF classifiers on 300 bootstrap resamples of the dataset
and obtained a distribution of importance values for every
predictor. The RF variable importance quantifies how important
each variable is for predicting the outcome in the random
forest model. For diagnosing appendicitis, on average, the
most important predictors were appendix diameter, appendix
visibility on US, and peritonitis. For management, they were
peritonitis, appendix diameter, and WBC count. For severity,
they were CRP, peritonitis, and body temperature (details
in Figure 2). Plots of importance values for the full set
of predictors are shown in Supplementary Figure 2. Overall,
these findings agreed with the statistical results in Table 2

and Supplementary Tables 3, 4. Predictor variables that differ
significantly across patient subgroups are often among the most
important features used by random forests for predictions.

In addition, we performed variable selection using RF
importance. Figure 3 contains AUROC and AUPR plots for RF
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TABLE 3 | Ten-fold cross-validation results for logistic regression (LR), random forest (RF), and generalized boosted regression (GBM) models for predicting diagnosis,

management, and severity.

Classifier Diagnosis Management Severity

AUROC (±SD) AUPR (±SD) AUROC (±SD) AUPR (±SD) AUROC (±SD) AUPR (±SD)

Random 0.50 0.43 0.50 0.38 0.50 0.12

AS 0.75 0.71 — — — —

PAS 0.71 0.67 — — — —

AS or PAS ≥ 4 and appendix diameter ≥ 6mm 0.79 0.83 — — — —

Suspected diagnosis 0.73 0.85 — — — —

LR (full) 0.91 (±0.04) 0.88 (±0.07) 0.90 (±0.04) 0.88 (±0.06) 0.82 (±0.13) 0.53 (±0.26)

LR (w/o US) 0.82 (±0.06) 0.71 (±0.12) 0.91 (±0.04) 0.90 (±0.05) 0.91 (±0.09) 0.69 (±0.26)

LR (w/o peritonitis/abdominal guarding) 0.90 (±0.04) 0.87 (±0.06) 0.83 (±0.04) 0.79 (±0.06) 0.82 (±0.15) 0.58 (±0.28)

LR (w/o US and peritonitis/abdominal guarding) 0.77 (±0.06) 0.67 (±0.14) 0.80 (±0.04) 0.77 (±0.06) 0.81 (±0.16) 0.62 (±0.26)

RF (full) 0.96 (±0.01) 0.94 (±0.03) 0.94 (±0.02) 0.92 (±0.05) 0.90 (±0.08) 0.70 (±0.17)

RF (w/o US) 0.85 (±0.05) 0.77 (±0.11) 0.93 (±0.03) 0.90 (±0.07) 0.90 (±0.08) 0.67 (±0.18)

RF (w/o peritonitis/abdominal guarding) 0.95 (±0.01) 0.93 (±0.05) 0.85 (±0.07) 0.79 (±0.11) 0.88 (±0.10) 0.65 (±0.23)

RF (w/o US and peritonitis/abdominal guarding) 0.80 (±0.06) 0.73 (±0.11) 0.78 (±0.05) 0.70 (±0.10) 0.86 (±0.10) 0.58 (±0.21)

GBM (full) 0.96 (±0.02) 0.94 (±0.03) 0.94 (±0.02) 0.93 (±0.04) 0.90 (±0.07) 0.64 (±0.21)

GBM (w/o US) 0.85 (±0.06) 0.75 (±0.10) 0.92 (±0.04) 0.90 (±0.05) 0.91 (±0.07) 0.60 (±0.25)

GBM (w/o peritonitis/abdominal guarding) 0.95 (±0.02) 0.92 (±0.05) 0.87 (±0.05) 0.82 (±0.08) 0.84 (±0.13) 0.58 (±0.25)

GBM (w/o US and peritonitis/abdominal guarding) 0.79 (±0.06) 0.71 (±0.11) 0.79 (±0.07) 0.72 (±0.08) 0.84 (±0.12) 0.55 (±0.27)

Results are given by average areas under receiver operating characteristic (AUROC) and precision-recall (AUPR) curves and standard deviations across 10 folds. “Full” models use

all predictors; models “w/o US” were trained without ultrasonographic findings; models “w/o peritonitis/abdominal guarding” were trained without “peritonitis/abdominal guarding”

predictor; and models “w/o US and peritonitis/abdominal guarding” were trained without ultrasonographic findings and “peritonitis/abdominal guarding” predictor. For fixed classification

rules, such as Alvarado (AS) and pediatric appendicitis scores (PAS), AUROC and AUPR on the whole dataset are reported without standard deviations. For random classifiers, we

report expected AUROC and AUPR. “Random” corresponds to a random guess and serves as a naïve baseline. Bold values correspond to the best average performances achieved

across all models.

TABLE 4 | Ten-fold cross-validation results for logistic regression (LR), random forest (RF), and generalized boosted regression (GBM) models for predicting diagnosis,

management, and severity.

Classifier Diagnosis Management Severity

Sens. (±SD) Spec. (±SD) Sens. (±SD) Spec. (±SD) Sens. (±SD) Spec. (±SD)

Random 0.57 0.43 0.62 0.38 0.88 0.12

AS or PAS ≥ 4 and appendix diameter ≥ 6mm 0.91 0.73 — — — —

Suspected diagnosis 1.00 0.46 — — — —

LR (full) 0.88 (±0.06) 0.76 (±0.11) 0.85 (±0.09) 0.82 (±0.09) 0.93 (±0.05) 0.42 (±0.32)

LR (w/o US) 0.75 (±0.06) 0.72 (±0.09) 0.92 (±0.07) 0.85 (±0.05) 0.95 (±0.04) 0.52 (±0.29)

LR (w/o peritonitis/abdominal guarding) 0.87 (±0.07) 0.76 (±0.12) 0.84 (±0.10) 0.68 (±0.15) 0.94 (±0.05) 0.40 (±0.36)

LR (w/o US and peritonitis/abdominal guarding) 0.77 (±0.06) 0.67 (±0.11) 0.82 (±0.06) 0.63 (±0.07) 0.97 (±0.05) 0.44 (±0.34)

RF (full) 0.91 (±0.03) 0.86 (±0.08) 0.94 (±0.07) 0.80 (±0.09) 0.98 (±0.02) 0.45 (±0.16)

RF (w/o US) 0.81 (±0.07) 0.71 (±0.07) 0.93 (±0.07) 0.82 (±0.07) 0.97 (±0.02) 0.44 (±0.13)

RF (w/o peritonitis/abdominal guarding) 0.91 (±0.04) 0.90 (±0.06) 0.86 (±0.07) 0.65 (±0.18) 0.98 (±0.02) 0.37 (±0.17)

RF (w/o US and peritonitis/abdominal guarding) 0.79 (±0.06) 0.64 (±0.11) 0.81 (±0.06) 0.56 (±0.06) 0.98 (±0.02) 0.40 (±0.15)

GBM (full) 0.93 (±0.02) 0.86 (±0.07) 0.93 (±0.07) 0.86 (±0.07) 0.97 (±0.02) 0.46 (±0.18)

GBM (w/o US) 0.80 (±0.07) 0.74 (±0.11) 0.91 (±0.08) 0.85 (±0.05) 0.97 (±0.03) 0.44 (±0.16)

GBM (w/o peritonitis/abdominal guarding) 0.92 (±0.04) 0.83 (±0.09) 0.88 (±0.04) 0.66 (±0.11) 0.97 (±0.03) 0.47 (±0.20)

GBM (w/o US and peritonitis/abdominal guarding) 0.80 (±0.06) 0.61 (±0.10) 0.82 (±0.07) 0.59 (±0.09) 0.97 (±0.03) 0.47 (±0.19)

Results are given by average sensitivities (sens.) and specificities (spec.) with standard deviations across 10 folds. “Full” models use all predictors; models “w/o US” were trained

without ultrasonographic findings; models “w/o peritonitis/abdominal guarding” were trained without the “peritonitis/abdominal guarding” predictor; and models “w/o US and

peritonitis/abdominal guarding” were trained without ultrasonographic findings or the “peritonitis/abdominal guarding” predictor. For all classifiers, a probability threshold of 0.5 was

used to differentiate between classes. “Random” corresponds to a random guess and serves as a naïve baseline. Bold values correspond to the best average performances achieved

across all models.
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TABLE 5 | Ten-fold cross-validation results for logistic regression (LR), random forest (RF), and generalized boosted regression (GBM) models for predicting diagnosis,

management, and severity.

Classifier Diagnosis Management Severity

PPV (±SD) NPV (±SD) PPV (±SD) NPV (±SD) PPV (±SD) NPV (±SD)

Random 0.57 0.43 0.62 0.38 0.88 0.12

AS or PAS ≥ 4 and appendix diameter ≥ 6mm 0.82 0.85 — — — —

Suspected diagnosis 0.71 1.00 — — — —

LR (full) 0.83 (±0.07) 0.83 (±0.09) 0.89 (±0.06) 0.79 (±0.09) 0.92 (±0.04) 0.51 (±0.28)

LR (w/o US) 0.78 (±0.08) 0.68 (±0.10) 0.91 (±0.03) 0.88 (±0.10) 0.94 (±0.04) 0.61 (±0.34)

LR (w/o peritonitis/abdominal guarding) 0.83 (±0.09) 0.82 (±0.11) 0.82 (±0.05) 0.74 (±0.09) 0.92 (±0.04) 0.45 (±0.29)

LR (w/o US and peritonitis/abdominal guarding) 0.76 (±0.09) 0.68 (±0.10) 0.78 (±0.04) 0.68 (±0.09) 0.93 (±0.04) 0.69 (±0.33)

RF (full) 0.89 (±0.08) 0.88 (±0.05) 0.88 (±0.04) 0.90 (±0.12) 0.93 (±0.03) 0.80 (±0.26)

RF (w/o US) 0.78 (±0.07) 0.74 (±0.10) 0.89 (±0.04) 0.88 (±0.10) 0.93 (±0.03) 0.72 (±0.24)

RF (w/o peritonitis/abdominal guarding) 0.92 (±0.05) 0.88 (±0.07) 0.81 (±0.09) 0.74 (±0.13) 0.92 (±0.04) 0.77 (±0.24)

RF (w/o US and peritonitis/abdominal guarding) 0.74 (±0.11) 0.69 (±0.09) 0.75 (±0.05) 0.65 (±0.10) 0.92 (±0.03) 0.72 (±0.23)

GBM (full) 0.89 (±0.07) 0.90 (±0.04) 0.91 (±0.04) 0.88 (±0.10) 0.93 (±0.02) 0.67 (±0.21)

GBM (w/o US) 0.81 (±0.09) 0.73 (±0.11) 0.91 (±0.03) 0.87 (±0.11) 0.93 (±0.02) 0.70 (±0.25)

GBM (w/o peritonitis/abdominal guarding) 0.87 (±0.08) 0.89 (±0.06) 0.81 (±0.04) 0.77 (±0.08) 0.93 (±0.03) 0.72 (±0.24)

GBM (w/o US and peritonitis/abdominal guarding) 0.73 (±0.09) 0.70 (±0.10) 0.76 (±0.06) 0.67 (±0.11) 0.93 (±0.03) 0.68 (±0.23)

Results are given by average positive and negative predictive values (PPV/NPV) with standard deviations across 10 folds. “Full” models use all predictors; models “w/o US” were

trained without ultrasonographic findings; models “w/o peritonitis/abdominal guarding” were trained without the “peritonitis/abdominal guarding” predictor; and models “w/o US and

peritonitis/abdominal guarding” were trained without ultrasonographic findings or the “peritonitis/abdominal guarding” predictor. For all classifiers, a probability threshold of 0.5 was

used to differentiate between classes. “Random” corresponds to a random guess and serves as a naïve baseline. Bold values correspond to the best average performances achieved

across all models.

models based on varying numbers of predictors. For predicting
diagnosis, classifier AUROC and AUPR values saturated at
q = 3 (Figures 3A,B). Thus, a few variables suffice for
accurate appendicitis risk stratification. For management, there
was a steady increase in average AUROC (Figure 3C) with
an increase in the number of predictor variables selected. For
AUPPR, classifiers with <14 predictors (Figure 3D) had higher
variances in 10-fold CV. Predictive performance stabilized at
q = 14. Similarly, for predicting severity, average AUROC and
AUPR increased steadily with model complexity (Figures 3E,F).
AUROC saturated at q = 5, and AUPR at q = 11. For all three
prediction tasks, we observed that the full set of predictors is
far from necessary because full-model performance levels can be
achieved with a smaller number of variables.

We used bootstrapping to determine how frequently variables
were selected based on their RF importance. For predicting
diagnosis, we looked at choosing q = 3 most important variables.
The variables chosen in >5% of bootstrap resamples included
appendix diameter, appendix visibility on US, peritonitis, target
sign, WBC count, and neutrophil percentage. For management
we examined a subset of size q = 14. The variables selected
in ≥5% of bootstrap resamples included peritonitis, CRP,
neutrophil percentage, WBC count, appendix diameter, enteritis,
target sign, appendix perfusion, AS, body temperature, age,
surrounding tissue reaction, appendix layer structure, weight,
body mass index (BMI), height, and PAS. For severity we
chose a subset of q = 11 variables. The following predictors
were selected in >5% of bootstrap resamples: peritonitis,
CRP, body temperature, WBC count, neutrophil percentage,
appendix diameter, appendix perfusion, weight, age, bowel wall
thickening, height, AS, BMI, ileus, appendix layer structure, PAS,

erythrocytes in urine, and target sign. Supplementary Table 5

summarizes these variable selection results.

ONLINE TOOL

We provide an easy-to-use online tool for the three response
variables at http://papt.inf.ethz.ch/ (33). The RF models
implemented in this tool use limited sets of predictors chosen
based on variable importance and 10-fold CV. We chose random
forests because they outperformed logistic regression and were,
in general, on a par with GBM. We included the variables
selected into subsets in ≥5% of bootstrap resamples of the
dataset. The tool presents a pilot status and was developed for
educational use only. Even in further steps after prospective
validation, practical clinical considerations must be incorporated
into decision-making.

DISCUSSION

This observational study of children referred with abdominal
pain to the pediatric surgical department used different ML
models to predict the diagnosis, management and severity
of appendicitis. Starting with a granular dataset including
demographic, clinical, laboratory, and US variables, we identified
a minimal subset of key predictors and trained classifiers that
far outperformed conventional scores such as the AS and PAS.
Since all the variables we used in this study are standardized and
widely available for evaluating patients with abdominal pain, our
findings are broadly relevant.We also developed the Appendicitis
Prediction Tool (APT) to predict the diagnosis, management and
severity of appendicitis with unlimited online access.
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FIGURE 2 | Boxplots of random forest (RF) importance values for a few most important predictors. RF variable importance quantifies how important each variable is for

predicting the considered outcome. Appendix diameter, peritonitis/abdominal guarding, white blood cell (WBC) count, neutrophil percentage, and C-reactive protein

(CRP) are among 10 most important variables for predicting diagnosis, management and severity. Distributions were obtained by training random forest classifiers on

300 bootstrap resamples of the dataset. The bootstrapping was performed to provide uncertainty about variable importance values, rather than mere point estimates.

A basic challenge with ML models is that their performance
depends largely on the quality and representativity of the
training data, and their applicability in real life depends on the
accessibility of required features (34). For example, assessing
abdominal guarding as a sign of peritonitis can be challenging
during initial presentation of small children with abdominal pain.
If this finding is unclear, it is recommended that assessment
be repeated during the clinical observation period, if necessary
under analgesia (35, 36). Based on RF variable importance and
CV results, we found that “peritonitis/abdominal guarding” had
the highest importance for predicting management, but not
appendicitis or appendicitis severity, for which other predictors
were more important (Figure 2). The AS and PAS can be easily
calculated after clinical examination and hemogram. Although
abdominal and appendix US is the most suitable and cost-
effective imaging modality for suspected appendicitis, it is highly
operator-dependent, requiring years of training, particularly for
children, and is not always on hand in every ED. That is why we
also trained models without “peritonitis/abdominal guarding,”
without US, and without either “peritonitis/abdominal guarding”
or US. These variables are not mandatory in the prediction
tool, making it easier to deploy. The predictors are imputed
using the k-NN method if the user decides to omit them.

Nevertheless, based on the CV results (Table 3), the models
incorporating US variables performed considerably better in
predicting diagnosis and management and hence are preferred,
to avoid complications and misdiagnosis. Most children with
missed appendicitis on presenting to the ED of a tertiary care
hospital did not undergo US (67 vs. 13% of correctly diagnosed
cases, p < 0.05) (37).

Several studies have used ML to support the diagnosis of
appendicitis (30, 38, 39). Four recent studies have focused
exclusively on the pediatric population (40–43). Reismann et al.
performed feature selection and trained a logistic regression to
diagnose appendicitis and differentiate between uncomplicated
and complicated cases of pediatric acute appendicitis (40). They
analyzed laboratory variables and appendix diameter in US and
achieved AUROCs of 0.91 and 0.80 for diagnosing appendicitis
and differentiating complicated appendicitis, respectively.
Akmese et al. analyzed demographic and laboratory data and
used a range of ML methods to predict whether pediatric
patients with suspected acute appendicitis underwent surgery
(41). In their analysis, gradient boosting attained the highest
accuracy (95%). Similar to Akmese et al. (41) Aydin et al.
detected pediatric appendicitis based on demographic and pre-
operative laboratory data (42). In addition, they differentiated
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FIGURE 3 | Results of 10-fold cross-validation for random forest classifiers based on different numbers of predictor variables selected based on variable importance.

(A,B) Show areas under receiver operating characteristic (AUROC) and precision-recall (AUPR) curves, respectively, for predicting diagnosis. (C,D) Show AUROCs

and AUPRs, respectively, for predicting management. (E,F) Show AUROCs and AUPRs, respectively, for predicting severity. Black-colored bars correspond to 95%

confidence intervals, constructed using t-distribution; red-colored dots correspond to averages. Recall that random classifier AUROCs are 0.50 for all three targets

and random classifier AUPRs are 0.43, 0.38, and 0.12 for diagnosis, treatment, and complicated appendicitis, respectively.

between complicated and uncomplicated appendicitis. Their
decision tree model achieved AUROCs of 0.94 and 0.79
for predicting appendicitis and uncomplicated appendicitis,

respectively. Stiel et al. applied different appendicitis scores
(AS, PAS, Heidelberg, and Tzanakis Score) to a dataset of
pediatric patients presenting with abdominal pain to predict
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diagnosis and perforated appendicitis (43). The Heidelberg
Score was modified and a data-driven score was developed
using decision trees and random forests, achieving AUROCs of,
respectively, 0.92 and 0.86 for appendicitis diagnosis, and both
0.71 for perforation.

Our own analysis focused exclusively on the pediatric
population given the particularities of appendicitis in this age
range: atypical clinical course and elevated perforation rates
in preschool-aged children, high prevalence, and multiple
differential diagnoses (44, 45). In addition to demographic,
laboratory, and ultrasonographic data, we considered clinical
predictors, such as peritonitis/abdominal guarding, and
appendicitis scores (AS and PAS). Moreover, we targeted
the prediction of all three targets simultaneously: diagnosis,
management, and severity. None of the machine learning models
mentioned above were deployed as an open access online tool
(40–43), whereas our models are available as an easy-to-use APT.

Our 10-fold CV results (Table 3) are overall comparable to
the performance levels reported by Reismann et al. (40), Akmese
et al. (41), Aydin et al. (42), and Stiel et al. (43) whose studies are
similar to ours. Compared to the previous work on using ML to
predict pediatric appendicitis (40–43), our analysis considers the
most extensive set of variables and, to the best of our knowledge,
is the first to simultaneously predict diagnosis, management, and
severity of appendicitis in pediatric patients. In a retrospective
study Cohen et al. found that children with a normal WBC
count and an appendix non-visualized on US could initially be
kept under observation (46). According to our data, appendix
visibility on US is one of the most important predictors for
diagnosis (Figure 2).

In the presented collective, pediatric patients with suspected
simple appendicitis and persistent symptoms after initial
treatment and evaluation at the ED were admitted to further
observation and therapy, as shown in Supplementary Figure 1.
They received initial clinical support, e.g., intravenous fluids,
enemas, without antibiotics. Eighty two patients with clinical
and US signs of uncomplicated appendicitis showed clinical
improvement, including appendicitis regression signs in US.
Therefore, they were discharged after a period of observation.
Several studies indicate that simple and complicated appendicitis
might have a different pathophysiology, suggesting that some
forms of uncomplicated appendicitis may be reversible, and,
as an alternative to operation, could be treated with or even
without antibiotics (1, 47–50). Ohba et al. (12) conducted
a prospective study of pediatric appendicitis based on US
findings such as appendix diameter, wall structure, and
perfusion. Their results support the possibility of treating
pediatric patients conservatively without antibiotics if
abundant blood flow in the appendix submucosal layer is
still detectable.

The APT is an academic instrument whose sensitivity
and specificity require further clinical testing. This prototype
was developed based on our first dataset as a pilot trial
with a promising application of ML as a basis for further
prospective studies. It needs a larger training dataset and external
blinded validation before it can be integrated into clinical

decision-making. The model could be extended to differentiate
patients requiring primary surgery from those suitable for
conservative management with or without antibiotics by
identifying the characteristics supporting spontaneous regression
of acute appendicitis. Furthermore, predictive models could
be used to support the decision on which surgical approach
is the best suitable for the patient. Certain minimal invasive
approaches such as TULAA (trans-umbilical laparoscopic-
assisted appendectomy) may benefit from preoperative patient
stratification, guiding the decision between single incision vs.
2-trocar technique (51).

STRENGTHS AND LIMITATIONS

The current dataset was acquired from patients admitted to
a pediatric surgical unit with suspected appendicitis. Those
with mild symptoms and/or rapid improvement had already
been discharged by the emergency department. This can be
assumed to have increased the probability of appendicitis among
surgical admissions. The predictors for all three outcomes include
clinical, laboratory, and US parameters that are readily and
cost-effectively available during a patient’s work-up. Limitations
include certain missing variables, a limited number of patients,
especially with complicated appendicitis, the lack of a definitive
histological diagnosis in conservatively managed patients (we
provide a more detailed discussion of this limitation in the
Supplementary Material), and the current absence of external
validation. Due to these limitations, the APT is merely a
research prototype and must not be relied on for health or
personal advice.

CONCLUSION

Pediatric appendicitis remains an important disease with
a heterogeneous presentation. The APT should help
clinicians identify and manage patients with potential
appendicitis. It could become an important tool for
clinical observation in the near future. The goal of further
research should be the expanded application of ML
models for the early differential diagnosis of children
with abdominal pain. We see it as a valuable tool for
recognizing appendicitis severity and facilitating a personalized
management approach.
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